- We know, acceleration is the change of velocity by time.
- Velocity is the speed of an object which also indicates the direction.
- Hence, acceleration is both dependant upon the speed as well as the direction.
- So, if an object is moving at a constant speed in a changing direction, the acceleration will also change. It will not be zero.
- An example is that of uniform circular motion.
Answer:
if an object is moving at a constant speed in a changing direction, the acceleration of the object will not be zero.
The degree is 4678% to pass theough all membranes.
Coal is burned to get energy. By burning coal, green houses gases like carbon dioxide, nitrogen oxides and suphur oxides are produced.
Rest of the energy sources given in the option are clean energies.
Answer is A.
I don’t think I’m right but I want to say 500 m/s
Answer:
A) 199.78 J
B) 9.292x10^14 J
C) 4.2x10^7 m/s
D) 0.65 m
E) 1.13x10^-8 sec
D) 2.94x10^-9 sec
Explanation:
mass of ball = 0.0580 kg
A)
If smashed at v = 83.0 m/s, KE is
KE = 0.5mv^2
= 0.5 x 0.0580 x 83.0^2
= 199.78 J
B) if returned at v = 1.79×10^8 m/s, KE will be
KE = 0.5mv^2
= 0.5 x 0.0580 x (1.79×10^8)^2
= 9.292x10^14 J
C) during Einstein's return, velocity of rabbit relative to players is
Vr = 2.21×108 m/s
Rabbit's velocity relative to ball = 2.21×10^8 - 1.79×10^8
= 4.2x10^7 m/s
D) the rabbit's speed approaches the speed of light so we consider relativistic effect. The rabbit's measured distance is
l = l°( 1 - v^2/c^2)
= 2.5(1 - 2.21/3)
= 2.5 x 0.26
= 0.65 m
E) according to the players, the time taken by the rabbit is
t = d/v = 2.5/ 2.21×10^8
= 1.13x10^-8 sec
F) the time for rabbit as measured by rabbit is relativistic
t = t°( 1 - v^2/c^2)
= 1.13x10^-8 (1 - 2.21/3)
= 1.13x10^-8 x 0.26
= 2.94x10^-9 sec