Answer:
Archimedes Principle states that "any body completely or partially submerged in water is acted upon by an upthrust force which is equal to the magnitude of Weight of the body."
Answer:

Explanation:
Static friction occurs when an object initially starts at rest. When the surfaces of the materials touch, the microscopic unevenness interlock greatest with each other, causing the most friction out of the three.
During sliding friction, an object is already moving or in motion. The microscopic surfaces still interlock, but because the object is in motion, it has a momentum. Therefore, the magnitude of sliding friction is less than that of static friction.
Rolling friction occurs when an object rolls across some surface. Rather than surfaces interlocking, rolling friction is caused by the constant distortion of surfaces. As it rolls, the surfaces of the object are constantly wrapping and changing. This distortion causes the rolling friction. However, it is much less in magnitude when compared to static or sliding friction.
I believe the correct answer from the choices listed above is option D. The proportion of carbon-14 in an organism is useful in figuring out the age of that organism after it dies because <span>the proportion of carbon-14 slowly decreases after the death of the organism. Hope this answers the question.</span>
Find the horizontal components vcos30 ...one goes right and one goes left so they cancel each other.
Find vertical components vsin30.....there are two of them.... so 2vcos30....hey presto... resultant velocity = 2vCos30
Remember, that while sped is constant, acceleration is not. Acceleration is when velicity changes. So the graph which shows the slop <span>of a velocity vs time describes acceleration.
</span>If we have the straight line on the graph it means that the slope is always the same whereas the <span>non-linear graphs has a variable slope that changes depending on your point in the graph.
</span>To conclude - if your graph is not a straight line it has variable acc at many points.<span>
</span>