1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrey2020 [161]
4 years ago
7

In a manufacturing facility, 2-in-diameter brass balls (k = 64.1 Btu/h·ft·°F, rho = 532 lbm/ft^3, and cp = 0.092 Btu/lbm·°F) ini

tially at 360°F are quenched in a water bath at 120°F for a period of 2 min at a rate of 120 balls per minute. The convection heat transfer coefficient is 42 Btu/h·ft^2·°F. Take I to be the initial temperature. Determine:
a. The temperature of the balls after quenching.
b. The rate at which heat needs to be removed from the water in order to keep its temperature constant at 1200F.
Engineering
2 answers:
noname [10]4 years ago
5 0

Answer:

A) 205.872°F

B) 2172 Btu/min

Explanation:

A) First of all, we will compute the characteristic length and the Biot number to see if the lumped parameter analysis is applicable.

Thus;

Lc = V/A = (πD³/6)/(πD²)

Simplifying; L = D/6

Since D = 2 inches or in ft as D= 0.1667

Lc = 2/6 = 1/3 inches

Now we have to convert to feet because K is in ft.

Thus Lc = 1/3 x 0.0833 = 0.0278 ft

Formula for Biot number is;

Bi = hLc/k

Thus, Bi = (42 x 0.0278)/641 = 0.018

Since the biot number is less than 0.1,we will make use of the lumped parameter analysis which is given by;

T = T∞ + (Ti - T∞)e^(-bt) and

b = h/(ρ(Cp)(Lc))

Let's find b first before the temperature T.

Thus; b = 42/(532 x 0.092 x 0.0278) = 30.9 per hr

Now lets find the temperature after 2 minutes. For sake of ease of calculation, let's convert 2 minutes to hours to give; 2/60 = 0.033 hr

From the question, T∞ = 120°F and Ti = 360°F

So, T = 120 + (360 - 120)e^(-30.9 x 0.033)

T = 120 + 240e^(-1.02897)

T = 120 + (240 x 0.3578) = 205.872°F

B) The heat transfer to each ball is the product of mass, heat capacity and difference between

the initial and final temperature.

Thus;

Q = M(Cp)(Ti - T∞)

We know that Density = Mass/Volume and thus mass(M) =

Density x Volume = ρV

So;

Q = ρV(Cp)(Ti - T∞)

= 532 x ((π x 0.1667³)/6) x (0.092) (360 - 205.872)

= 532 x 0.0024 x 0.092 x 154.128 = 18.1 Btu

So for 120 balls per minute the total heat removal ;

18.1 Btu x (120 per minutes) = 2172 Btu per minutes

bekas [8.4K]4 years ago
4 0

Answer:

Explanation:

First we compute the characteristic length and the Biot number to see if the lumped parameter

analysis is applicable.

Since the Biot number is less than 0.1, we can use the lumped parameter analysis. In such an

analysis, the time to reach a certain temperature is given by the following

From the data in the problem we can compute the parameter, b, and then compute the time for

the ratio (T – T)/(Ti

– T)

You might be interested in
How much does it cost to replace a roof on a 2,200 square foot house.
Norma-Jean [14]

Answer:

An estimated amount of $8,200 to $12,000

Explanation:

~~It all really depends on what materials you have purchased for the replacement.

~~If you're to choose lower-quality materials the cost would be less but high-quality ones will be more expensive.

(The answer is if you're most likely to purchase asphalt shingles)

Hope this Helps!

7 0
2 years ago
Re armature of a 4 pole DC generator is required to generate an emf of 520v on open circuit when revolving at a speed of 660rpm.
bija089 [108]

Since the armature is wave wound, the magnetic flux per pole is 0.0274 Weber.

<u>Given the following data:</u>

  • Emf = 520 Volts
  • Speed = 660 r.p.m
  • Number of armature conductors = 144 slots
  • Number of poles = 4 poles
  • Number of parallel paths = 2

To find the magnetic flux per pole:

Mathematically, the emf generated by a DC generator is given by the formula;

E = \frac{\theta ZN}{60} × \frac{P}{A}

<u>Where:</u>

  • E is the electromotive force in the DC generator.
  • Z is the total number of armature conductors.
  • N is the speed or armature rotation in r.p.m.
  • P is the number of poles.
  • A is the number of parallel paths in armature.
  • Ф is the magnetic flux.

First of all, we would determine the total number of armature conductors:

Z = 144 × 2 × 3

Z = 864

Substituting the given parameters into the formula, we have;

520 = \frac{\theta (864)(660)}{60} × \frac{4}{2}

520 = \theta (864)(11) × 2

520 = 19008 \theta \\\\\Theta = \frac{520}{19008}

<em>Magnetic flux </em><em>=</em><em> 0.0274 Weber.</em>

Therefore, the magnetic flux per pole is 0.0274 Weber.

Read more: brainly.com/question/15449812?referrer=searchResults

5 0
3 years ago
4. What are these parts commonly called?
patriot [66]

These parts are commonly called carburetor emulsion tubes. These tubes maintain the air-fuel ratio at different speeds.

The carburetor is a device of the combustion engine power supply system that mixes fuel and air in order to facilitate internal combustion.

The carburetor emulsion tubes are tubes that maintain the air-fuel ratio at different velocities.

These tubes (carburetor emulsion tubes) are small brass cylinders where the metering needle slides into them.

Learn more about carburetors here:

brainly.com/question/4237015

7 0
3 years ago
I want a real answer to this, not just take my points
faust18 [17]

The reason you dream about him is because you continuously think about him, maybe even before falling asleep.

7 0
3 years ago
An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 40MPa. It has been dete
Nataly [62]

Answer:

Yes, fracture will occur

Explanation:

Half length of internal crack will be 4mm/2=2mm=0.002m

To find the dimensionless parameter, we use critical stress crack propagation equation

\sigma_c=\frac {K}{Y \sqrt {a\pi}} and making Y the subject

Y=\frac {K}{\sigma_c \sqrt {a\pi}}

Where Y is the dimensionless parameter, a is half length of crack, K is plane strain fracture toughness, \sigma_c  is critical stress required for initiating crack propagation. Substituting the figures given in question we obtain

Y=\frac {K}{\sigma_c \sqrt {a\pi}}= \frac {40}{300\sqrt {(0.002*\pi)}}=1.682

When the maximum internal crack length is 6mm, half the length of internal crack is 6mm/2=3mm=0.003m

\sigma_c=\frac {K}{Y \sqrt {a\pi}}  and making K the subject

K=\sigma_c Y \sqrt {a\pi}  and substituting 260 MPa for \sigma_c  while a is taken as 0.003m and Y is already known

K=260*1.682*\sqrt {0.003*\pi}=42.455 Mpa

Therefore, fracture toughness at critical stress when maximum internal crack is 6mm is 42.455 Mpa and since it’s greater than 40 Mpa, fracture occurs to the material

6 0
3 years ago
Other questions:
  • Two cars A and B leave an intersection at the same time. Car A travels west at an average speed of x miles per hour and car B tr
    9·1 answer
  • 1.The moist unit weights and degrees of saturation of a soil are given: moist unit weight (1) = 16.62 kN/m^3, degree of saturati
    11·1 answer
  • Please write the command(s) you should use to achieve the following tasks in GDB. 1. Show the value of variable "test" in hex fo
    5·1 answer
  • The cost of hiring new employees outpaces the raises for established employees is
    5·1 answer
  • 1. Pump extracts energy from a flowing fluid. _______
    10·1 answer
  • What forced induction device is more efficient?
    8·2 answers
  • Technician A states that a scan tool can read
    13·1 answer
  • 5. Liam is working on a circuit and notices it's quite hot to the touch. What's causing the heat Liam Is noticing
    6·1 answer
  • Who is the strongest avenger i say hulk but who knows at this point
    7·2 answers
  • Your duty is to construct the above circuit and change Potentiometer resistance until you see 1v 2v……12v at the output voltage w
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!