1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrey2020 [161]
3 years ago
7

In a manufacturing facility, 2-in-diameter brass balls (k = 64.1 Btu/h·ft·°F, rho = 532 lbm/ft^3, and cp = 0.092 Btu/lbm·°F) ini

tially at 360°F are quenched in a water bath at 120°F for a period of 2 min at a rate of 120 balls per minute. The convection heat transfer coefficient is 42 Btu/h·ft^2·°F. Take I to be the initial temperature. Determine:
a. The temperature of the balls after quenching.
b. The rate at which heat needs to be removed from the water in order to keep its temperature constant at 1200F.
Engineering
2 answers:
noname [10]3 years ago
5 0

Answer:

A) 205.872°F

B) 2172 Btu/min

Explanation:

A) First of all, we will compute the characteristic length and the Biot number to see if the lumped parameter analysis is applicable.

Thus;

Lc = V/A = (πD³/6)/(πD²)

Simplifying; L = D/6

Since D = 2 inches or in ft as D= 0.1667

Lc = 2/6 = 1/3 inches

Now we have to convert to feet because K is in ft.

Thus Lc = 1/3 x 0.0833 = 0.0278 ft

Formula for Biot number is;

Bi = hLc/k

Thus, Bi = (42 x 0.0278)/641 = 0.018

Since the biot number is less than 0.1,we will make use of the lumped parameter analysis which is given by;

T = T∞ + (Ti - T∞)e^(-bt) and

b = h/(ρ(Cp)(Lc))

Let's find b first before the temperature T.

Thus; b = 42/(532 x 0.092 x 0.0278) = 30.9 per hr

Now lets find the temperature after 2 minutes. For sake of ease of calculation, let's convert 2 minutes to hours to give; 2/60 = 0.033 hr

From the question, T∞ = 120°F and Ti = 360°F

So, T = 120 + (360 - 120)e^(-30.9 x 0.033)

T = 120 + 240e^(-1.02897)

T = 120 + (240 x 0.3578) = 205.872°F

B) The heat transfer to each ball is the product of mass, heat capacity and difference between

the initial and final temperature.

Thus;

Q = M(Cp)(Ti - T∞)

We know that Density = Mass/Volume and thus mass(M) =

Density x Volume = ρV

So;

Q = ρV(Cp)(Ti - T∞)

= 532 x ((π x 0.1667³)/6) x (0.092) (360 - 205.872)

= 532 x 0.0024 x 0.092 x 154.128 = 18.1 Btu

So for 120 balls per minute the total heat removal ;

18.1 Btu x (120 per minutes) = 2172 Btu per minutes

bekas [8.4K]3 years ago
4 0

Answer:

Explanation:

First we compute the characteristic length and the Biot number to see if the lumped parameter

analysis is applicable.

Since the Biot number is less than 0.1, we can use the lumped parameter analysis. In such an

analysis, the time to reach a certain temperature is given by the following

From the data in the problem we can compute the parameter, b, and then compute the time for

the ratio (T – T)/(Ti

– T)

You might be interested in
An engine has a piston with a surface area of 17.31 in2 and can travel 3.44 inches. What is the potential change in volume, disp
Katena32 [7]

Answer:

$$\begin{align*}

P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$

Explanation:

\eqalign{

 P(Y-X=m\mid Y\gt X)

   &=\sum_kP(Y-X=m,X=k\mid Y\gt X)\cr

   &=\sum_kP(Y-X=m\mid X=k,Y\gt X)\,P(X=k\mid Y>X)\cr

   &=\sum_kP(Y-k=m\mid Y\gt k)\,P(X=k\mid Y\gt X)\cr

}

P(Y-X=m | Y > X) &= \sum_{k} P(Y-X=m, X=k | Y > X) \\ &= \sum_{k} P(Y-X=m | X=k, Y > X) P(X=k | Y > X) \\ &= \sum_{k} P(Y-k=m | Y > k) P(X=k | Y > X).\end{split}$$

5 0
2 years ago
Are there engineering students here?​
leva [86]
Uh, I’d assume so because Brainly has a whole section of questions for them.
7 0
3 years ago
Read 2 more answers
What are the BENEFITS and RISKS of using automobiles?
Molodets [167]

Answer:

u could get hurt or it could not sence in but it easy to work with and u can just relax till u get were ur going.

Explanation:

3 0
3 years ago
¿Cuándo se formarán cristales en una mezcla que se está evaporando?
Georgia [21]
Answer - La cristalización ye un procesu químicu pol cual a partir d'un gas, un líquidu o una disolución, los iones, átomos o molécules establecen enllaces hasta formar una rede cristalina, la unidá básica d'un cristal. La cristalización emplegar con bastante frecuencia en química para purificar una sustancia sólida.
5 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
Other questions:
  • Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The co
    11·1 answer
  • Q: Draw shear and bending moment diagram for the beam shown in
    5·1 answer
  • a. To measure the water current in an ocean, a marker is dropped onto it. Determine if the trajectory traced by the drifting mar
    5·1 answer
  • Write a program that asks the user for the name of a file. The program should display the number of words that the file contains
    7·1 answer
  • Think of an employee object. What are several of the possible states that the object may have over time?
    6·1 answer
  • Think about the KIA factory shown in the video, what are two things that managers could do to reduce waste or increase efficienc
    6·1 answer
  • 1. A hydro facility operates with an elevation difference of 50 m and a flow rate of 500 m3/s. If the rotational speed is 90 RPM
    12·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B7x%7D%20%5C%2C%20dx" id="TexFormula1" title="\int\limits^a_b {7x} \
    8·1 answer
  • أجوبة على مسائل في الإستاتيكا أيمكن ذالك
    9·1 answer
  • Why is there an Engineering Process?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!