1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrey2020 [161]
4 years ago
7

In a manufacturing facility, 2-in-diameter brass balls (k = 64.1 Btu/h·ft·°F, rho = 532 lbm/ft^3, and cp = 0.092 Btu/lbm·°F) ini

tially at 360°F are quenched in a water bath at 120°F for a period of 2 min at a rate of 120 balls per minute. The convection heat transfer coefficient is 42 Btu/h·ft^2·°F. Take I to be the initial temperature. Determine:
a. The temperature of the balls after quenching.
b. The rate at which heat needs to be removed from the water in order to keep its temperature constant at 1200F.
Engineering
2 answers:
noname [10]4 years ago
5 0

Answer:

A) 205.872°F

B) 2172 Btu/min

Explanation:

A) First of all, we will compute the characteristic length and the Biot number to see if the lumped parameter analysis is applicable.

Thus;

Lc = V/A = (πD³/6)/(πD²)

Simplifying; L = D/6

Since D = 2 inches or in ft as D= 0.1667

Lc = 2/6 = 1/3 inches

Now we have to convert to feet because K is in ft.

Thus Lc = 1/3 x 0.0833 = 0.0278 ft

Formula for Biot number is;

Bi = hLc/k

Thus, Bi = (42 x 0.0278)/641 = 0.018

Since the biot number is less than 0.1,we will make use of the lumped parameter analysis which is given by;

T = T∞ + (Ti - T∞)e^(-bt) and

b = h/(ρ(Cp)(Lc))

Let's find b first before the temperature T.

Thus; b = 42/(532 x 0.092 x 0.0278) = 30.9 per hr

Now lets find the temperature after 2 minutes. For sake of ease of calculation, let's convert 2 minutes to hours to give; 2/60 = 0.033 hr

From the question, T∞ = 120°F and Ti = 360°F

So, T = 120 + (360 - 120)e^(-30.9 x 0.033)

T = 120 + 240e^(-1.02897)

T = 120 + (240 x 0.3578) = 205.872°F

B) The heat transfer to each ball is the product of mass, heat capacity and difference between

the initial and final temperature.

Thus;

Q = M(Cp)(Ti - T∞)

We know that Density = Mass/Volume and thus mass(M) =

Density x Volume = ρV

So;

Q = ρV(Cp)(Ti - T∞)

= 532 x ((π x 0.1667³)/6) x (0.092) (360 - 205.872)

= 532 x 0.0024 x 0.092 x 154.128 = 18.1 Btu

So for 120 balls per minute the total heat removal ;

18.1 Btu x (120 per minutes) = 2172 Btu per minutes

bekas [8.4K]4 years ago
4 0

Answer:

Explanation:

First we compute the characteristic length and the Biot number to see if the lumped parameter

analysis is applicable.

Since the Biot number is less than 0.1, we can use the lumped parameter analysis. In such an

analysis, the time to reach a certain temperature is given by the following

From the data in the problem we can compute the parameter, b, and then compute the time for

the ratio (T – T)/(Ti

– T)

You might be interested in
____ grinders are used to grind diameters, shoulders, and faces much like the lathe is used for turning, facing, and boring oper
skelet666 [1.2K]

Answer:

Cylindrical

Explanation:

<em>A cylindrical grinder </em><em>is a tool for shaping the exterior of an item. Although cylindrical grinders may produce a wide range of forms, the item must have a central axis of rotation. Shapes such as cylinders, ellipses, cams, and crankshafts are examples of this.</em><em> Cylindrical grinding</em><em> machines are specialized grinding machines that are used to process cylinders, rods, and similar workpieces. The cylinders revolve in one direction between two centers, while the grinding wheel or wheels are close together and rotate in the other direction.</em>

8 0
2 years ago
░░░░░░░░░░░░░░░░░░░▄▀▐░░░▌
allsm [11]

Answer:

wow

Explanation:

that's so cute!!!!!!!!

3 0
3 years ago
A sports car has a drag coefficient of 0.29 and a frontal area of 20 ft2, and is travelling at a speed of 120 mi/hour. How much
Andrej [43]

Answer:

Power required to overcome aerodynamic drag is 50.971 KW

Explanation:

For explanation see the picture attached

4 0
3 years ago
A 800-MW steam power plant, which is cooled by a nearby river, has a thermal efficiency of 40 percent. Determine the rate of hea
Arturiano [62]

Answer:

Rate of heat transfer to river=1200MW

So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes

Explanation:

In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:

Efficiency=\frac{work}{heat transfer to power plant}

Heat transfer=\frac{work}{Efficiency\\} \\\\Heat transfer=\frac{800}{0.40}\\\\Heat transfer=2000MW

From First law of thermodynamics:

Rate of heat transfer to river=heat transfer to power plant-work done

Rate of heat transfer to river=2000-800

Rate of heat transfer to river=1200MW

So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.

4 0
3 years ago
Engineers create a new metal that is stronger than steel but much lighter. This material is also significantly cheaper than what
zysi [14]

The best step for the engineers to make next is option D. Begin to design an airplane using this metal.

<h3>What is the metallic is plane parts?</h3>

Aluminum and its alloys are nevertheless very famous uncooked substances for the production of business planes, because of their excessive electricity at exceedingly low density. Currently, excessive-electricity alloy 7075, which includes copper, magnesium and zinc, is the only used predominantly withinside the plane industry.

The solution is D, due to the fact even as it's far crucial to marketplace the fabric and ensure humans are inquisitive about buying, they first want to attempt to layout aircraft the usage of this fabric. There isn't anyt any use promoting an aircraft constituted of this material_ if a aircraft can not be built.

Read more about the aircraft:

brainly.com/question/5055463

#SPJ1

7 0
2 years ago
Other questions:
  • Which one of the following is a list of devices from least efficient to most efficient
    9·1 answer
  • Draw a sinusoidal signal and illustrate how quantization and sampling is handled by
    8·1 answer
  • prove that the heat transfer at the constant pressure is given by the enthalpy change during the process​
    7·1 answer
  • A furnace uses preheated air to improve its fuel efficiency. Determine the adiabatic flame temperature when the furnance is oper
    13·1 answer
  • Develop a simple Business plan as an entrepreneur​
    5·1 answer
  • HOLA COMO ESTAN TODOS
    14·1 answer
  • The distribution of ground shaking around the fault
    5·1 answer
  • Which option identifies the free resource Judi can use in the following scenario?
    7·1 answer
  • 7. If you can't ignore a distraction, what should you do?
    15·1 answer
  • On a day in which the local atmospheric pressure is 99.5 kPa, answer each of the following: (a) Calculate the column height of m
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!