1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
otez555 [7]
3 years ago
12

Which of the following are evidence of what happened in the past?

Physics
1 answer:
sergiy2304 [10]3 years ago
7 0

Answer:

A

Explanation:

volcanoes and plate movement

You might be interested in
starting from a stop a traffic signal, a car speeds up to 20 m/s in 5 seconds. calculate the acceleration of the car.
Ira Lisetskai [31]

Answer:

5.867 m/s^2

Explanation:

Initial Speed > 0 m/s

Final Speed > 20 m/s

Time > 5 sec.

8 0
3 years ago
Light of wavelength 400 nm is incident on a single slit of width 15 microns. If a screen is placed 2.5 m from the slit. How far
olganol [36]

Answer:

0.0667 m

Explanation:

λ = wavelength of light = 400 nm = 400 x 10⁻⁹ m

D = screen distance = 2.5 m

d = slit width = 15 x 10⁻⁶ m

n = order = 1

θ = angle = ?

Using the equation

d Sinθ = n λ

(15 x 10⁻⁶) Sinθ = (1) (400 x 10⁻⁹)

Sinθ = 26.67 x 10⁻³

y = position of first minimum

Using the equation for small angles

tanθ = Sinθ = y/D

26.67 x 10⁻³ = y/2.5

y = 0.0667 m

5 0
3 years ago
HELPPP IM DESPERATE
damaskus [11]

the first one cuz I know

5 0
2 years ago
An element has the following natural abundances and isotopic masses: 90.92% abundance with 19.99 amu, 0.26% abundance with 20.99
sashaice [31]

<u>Answer:</u> The average atomic mass of the given element is 20.169 amu.

<u>Explanation:</u>

Average atomic mass of an element is defined as the sum of masses of the isotopes each multiplied by their natural fractional abundance.

Formula used to calculate average atomic mass follows:

\text{Average atomic mass }=\sum_{i=1}^n\text{(Atomic mass of an isotopes)}_i\times \text{(Fractional abundance})_i     .....(1)

We are given:

  • For isotope 1:

Mass of isotope 1 = 19.99 amu

Percentage abundance of isotope 1 = 90.92 %

Fractional abundance of isotope 1 = 0.9092

  • For isotope 2:

Mass of isotope 2 = 20.99 amu

Percentage abundance of isotope 2 = 0.26%

Fractional abundance of isotope 2 = 0.0026

  • For isotope 3:

Mass of isotope 3 = 21.99 amu

Percentage abundance of isotope 3 = 8.82%

Fractional abundance of isotope 3 = 0.0882  

Putting values in equation 1, we get:

\text{Average atomic mass}=[(19.99\times 0.9092)+(20.99\times 0.0026)+(21.99\times 0.0882)]

\text{Average atomic mass}=20.169amu

Hence, the average atomic mass of the given element is 20.169 amu.

4 0
3 years ago
The wave that carrys the most energy are the waves that?
lesya [120]

"<em>The different types of radiation are defined by the the amount of </em><em>energy</em><em> found in the photons. Radio </em><em>waves</em><em> have photons with low energies, microwave photons have a little </em><em>more energy</em><em> than radio </em><em>waves</em><em>, infrared photons have still </em><em>more</em><em>, then visible, ultraviolet, X-rays, and, the </em><em>most</em><em> energetic of all, gamma-rays.</em>"

5 0
2 years ago
Read 2 more answers
Other questions:
  • A piston above liquid in a closed container has an area of 1m2. The piston carries a load of 350 kg. What will be the external p
    11·2 answers
  • If the 140 g ball is moving horizontally at 25 m/s , and the catch is made when the ballplayer is at the highest point of his le
    6·1 answer
  • What is evaporation​
    8·2 answers
  • Which of the following air conditions would be LEAST likely to have precipitation 10 pts
    12·1 answer
  • Two events are observed in a frame of reference S to occur at the same space point, with the second event occurring after a time
    14·1 answer
  • How is velocity related to time
    6·2 answers
  • Kim throws a beach ball up in the air. It reaches its maximum height 0.50s later. We can ignore air resistance. What was the bea
    15·2 answers
  • A sphere of diameter 6.0
    9·1 answer
  • A man is standing on the edge of a 20.0 m high cliff. He throws a rock horizontally with an initial velocity of 10.0 m/s.
    11·1 answer
  • <img src="https://tex.z-dn.net/?f=%5Chuge%5Cmathfrak%7BQuestion%3A-%7D" id="TexFormula1" title="\huge\mathfrak{Question:-}" alt=
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!