1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
asambeis [7]
3 years ago
8

What is the distance an object travels and the direction of its motion from starting point?

Physics
1 answer:
castortr0y [4]3 years ago
6 0

Answer: Well you didn't give any answers so my guess would be it depends how much force you put into it and where you throw it.

Explanation:

You might be interested in
A skydiver jumps from an airplane and falls freely for 5 seconds. If the sky diver's velocity increases by 49 m/s during that ti
Sergeeva-Olga [200]

Acceleration  =  (change in speed)  /  (time for the change)

                       =      (49 m/s)   /   (5 seconds)

                       =       (49 / 5)  m/s  /  s

                       =            9.8 m/s² 
8 0
3 years ago
Read 2 more answers
The universal law of gravity states that all objects attracts all other objects.
andreev551 [17]
When the object is big enough to contract itself into a ball.
4 0
3 years ago
a body of mass 0.2kg is whirled round a horizontal circle by a string inclined at 30 degrees to the vertical calculate <br /&
Katen [24]

Answer:

a)  T = 2.26 N, b) v = 1.68 m / s

Explanation:

We use Newton's second law

Let's set a reference system where the x-axis is radial and the y-axis is vertical, let's decompose the tension of the string

        sin 30 = \frac{T_x}{T}

        cos 30 = \frac{T_y}{T}

        Tₓ = T sin 30

        T_y = T cos 30

Y axis  

       T_y -W = 0

       T cos 30 = mg                     (1)

X axis

        Tₓ = m a

they relate it is centripetal

        a = v² / r

we substitute

         T sin 30 = m\frac{v^2}{r}            (2)

a) we substitute in 1

         T = \frac{mg }{cos 30}

         T = \frac{ 0.2 \ 9.8}{cos  \ 30}

         T = 2.26 N

b) from equation 2

           v² = \frac{T \ sin 30 \ r}{m}

If we know the length of the string

          sin 30 = r / L

          r = L sin 30

we substitute

          v² = \frac{ T \ sin 30 \ L \ sin 30}{m}

          v² = \frac{TL \ sin^2  30}{m}

For the problem let us take L = 1 m

let's calculate

          v = \sqrt{ \frac{2.26 \ 1 \ sin^230}{0.2} }

          v = 1.68 m / s

8 0
3 years ago
7. Two people are pushing a 40.0kg table across the floor. Person 1 pushes with a force of 490N
artcher [175]

Answer:

20.4 m/s^{2}

Explanation:

To start doing this problem, first draw a free body diagram of the table. My teacher always tells us to do this, and I find that it is very helpful. I have attached a free body diagram to this answer- take a look at it.

First, let us see if Net force = MA. To do that, we need to determine whether the object is at equilibrium horizontally. For an object to be at equilibrium, it either needs to be moving at a constant velocity or not moving at all. Also, if an object is at equilibrium, there will not be any acceleration. But we know that there IS acceleration horizontally, so it cannot be in equilibrium. If it is not in equilibrium, we can use the formula ∑F= ma.

Let us determine the net force. Since the object is moving horizontally, we can ignore the weight and normal force, because they are vertical forces. The only horizontal forces we need to worry about are the applied force and force of friction.

Applied force = 1055 N (490 + 565)

Friction force= Unknown

To find the friction force, use the kinetic friction formula, Friction = μkN

μk is the coefficient, which the problem includes- it is 0.613.

N is the normal force, which we have to find.

*To find the normal force, we have to determine if the object is at equilibrium VERTICALLY. Since it has no acceleration vertically (it's not moving up/down), it is at equilibrium. Now, when an object is at equilibrium in one direction, it means that all the forces in that direction are equal. What are our vertical forces? Weight (mg) and Normal force (N). So it means that the Normal force is equal to the Weight.

Weight = mg = (40)(9.8) = 392 N

Normal force = 392 N

Now, plug it back into the formula (μkN): (0.613)(392) = 240.296 N

Friction = 240.296 N

Now that we know the friction, we can find the horizontal net force. Just subtract the friction force, 240.296 from the applied force, 1055 N

Horizontal Net Force: 814.704 N

Now that we know the net force, plug in the numbers for the formula

∑F= ma.

814.704 = (40.0)(a)

*Divide on both sides)

a = 20.3676 m/s^2

Round it to 3 significant figures, to get:

20.4 m/s^{2}

7 0
3 years ago
The unusually bright centers found in some galaxies are called ______.
Nimfa-mama [501]
<span>Active Galactic Nuclei.</span>
4 0
3 years ago
Other questions:
  • You are climbing in the High Sierra where you suddenly find yourself at the edge of a fog-shrouded cliff. To find the height of
    6·1 answer
  • What is the value of x if one side is 8 and the other side is 6
    13·1 answer
  • A nerve signal is transmitted through a neuron when an excess of Na+ ions suddenly enters the axon, a long cylindrical part of t
    10·1 answer
  • How is work related to force and displacement?
    11·1 answer
  • ........................
    14·1 answer
  • Which one of the following represents the number of units of each substance
    5·1 answer
  • A car is travelling at a constant speed of 26.5 m/s. Its tires have a radius of 72 cm. If the car slows down at a constant rate
    7·1 answer
  • Compare the different types of force?
    15·1 answer
  • Identification of elements compounds and mixtures from a given table​
    6·1 answer
  • Which of the following statements best describes an electromagnetic wave with a short wavelength?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!