Answer:
Every action has an equal and opposite reaction. If the student doesn't push, nothing moves, is one student pushes, both move which is an example of newtons third law.
Explanation:
Answer:
2.5 s, 5 m
Explanation:
The equations for the horizontal and vertical position of Lukalu are:

we can find the time it takes her to reach the ground by requiring that the vertical position becomes zero:
y(t) = 0
So we find:

The horizontal distance of Lukalu instead will be given by the equation for the horizontal position, substituting t = 2.5 s:

mass of the ball m = 0.63 kg
initial height h = 1.8 m
final height h ' = 3.03 m
initial speed v = 7.09 m / s
final speed v ' = 4.21 m / s
Let the work done on the ball by air resistance W = ?
we know from law of conservation of energy ,
total energy at height h + work done by air = total energy at height h '
mgh + ( 1/ 2) mv^ 2 + W = mgh ' + ( 1/ 2) mv'^ 2
0.630*9.8*1.8 + 0.63*7.09^2 + W = mgh ' + ( 1/ 2) mv'^ 2
From there you can find W
if there is negative sign indicates it work opposite direction to motion
The photon energy is the light frequency times Planck's constant. ... Planck's constant is usually called "h". Its value is about 6.626*10^-34 Joules/ Hz. A Joule is a unit of energy, and a Hertz is a unit of frequency, so when you multiply a frequency by h you get an energy.