1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svetach [21]
3 years ago
11

The work function for a metal surface is 4.98 eV. What is the largest wavelength of light in nm that will produce photoelectrons

from this surface? (Use 1 eV = 1.602 ✕ 10−19 J, e = 1.602 ✕ 10−19 C, c = 2.998 ✕ 108 m/s, and h = 6.626 ✕ 10−34 J · s = 4.136 ✕ 10−15 eV · s as necessary.)
Physics
1 answer:
bulgar [2K]3 years ago
3 0

Answer:\lambda =248.99 nm

Explanation:

Given

Work function\left ( \phi \right )=4.98\approx 1.602\times 10^{-19}\times 4.98

h=6.626\times 10^{-34} J

c=2.998\times 10^8

\phi =\frac{hc}{\lambda }

\lambda =\frac{hc}{\phi }

\lambda =\frac{6.626\times 10^{-34}\times 2.998\times 10^8}{4.98\times 1.602\times 10^{-19}}

\lambda =248.99 nm

You might be interested in
Since sinusoidal waves are cyclical, a particular phase difference between two waves is identical to that phase difference plus
r-ruslan [8.4K]

Answer:

nπ + π/2 for any integer n

Explanation:

Since destructive interference occurs every odd multiple of half wavelength, that is π/2, 3π/2, 5π/2 where the interference is half wavelength and in general, (n + 1/2)π where n is an integer. So, nπ + π/2 for any integer n

4 0
3 years ago
Two runners start at the same point on a straight track. The first runs with constant acceleration so that he covers 98 yards in
charle [14.2K]

Answer:

94.13 ft/s

Explanation:

<u>Given:</u>

  • t = time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
  • s = distance to be moved by the rock long the horizontal = 98 yards
  • y = displacement to be moved by the rock during the time of flight along the vertical = 0 yard

<u>Assume:</u>

  • u = magnitude of initial velocity of the rock
  • \theta = angle of the initial velocity with the horizontal.

For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

\therefore y = u\sin \theta t +\dfrac{1}{2}(-g)t^2\\\Rightarrow 0 = u\sin \theta 5 +\dfrac{1}{2}(-9.8)\times 5^2\\\Rightarrow u\sin \theta 5 =\dfrac{1}{2}(9.8)\times 5^2......(1)\\

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

\therefore u\cos \theta t = s\\\Rightarrow u\cos \theta 5 = 98.....(2)\\

On dividing equation (1) by (2), we have

\tan \theta = \dfrac{25}{20}\\\Rightarrow \tan \theta = 1.25\\\Rightarrow \theta = \tan^{-1}1.25\\\Rightarrow \theta = 51.34^\circ

Now, putting this value in equation (2), we have

u\cos 51.34^\circ\times  5 = 98\\\Rightarrow u = \dfrac{98}{5\cos 51.34^\circ}\\\Rightarrow u =31.38\ yard/s\\\Rightarrow u =31.38\times 3\ ft/s\\\Rightarrow u =94.13\ ft/s

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.

3 0
3 years ago
Which Of The Following Research Methods Are Widely Used By Psychologists?
goldenfox [79]

Answer: As you said D.

Explanation:

4 0
3 years ago
Two equal, but oppositely charged particles are attracted to each other electrically. The size of the force of attraction is 48.
galina1969 [7]

Given:

The force of attraction is F = 48.1 N

The separation between the charges is

\begin{gathered} r=\text{ 60.9 cm} \\ =\text{ 60.9}\times10^{-2}\text{ m} \end{gathered}

Also, the magnitude of charge q1 = q2 = q.

To find the magnitude of charge.

Explanation:

The magnitude of charge can be calculated by the formula

\begin{gathered} F=\frac{k(2q)}{r^2} \\ q=\frac{Fr^2}{2k} \end{gathered}

Here, k is the Coulomb's constant whose value is

k\text{ = 9}\times10^9\text{ N m}^2\text{ /C}^2

On substituting the values, the magnitude of charge will be

\begin{gathered} q=\frac{48.1\times(60.9^\times10^{-2})^2}{2\times9\times10^{^9}} \\ =9.91\times10^{-10}\text{ C} \\ =9.91\times10^{-4}\text{ }\mu C \end{gathered}

Thus, the magnitude of each charge is 9.91 x 10^(-4) micro Coulombs.

6 0
1 year ago
A 65-kg woman in an elevator is accelerating upward at a rate of 0.6 m/s2. The gravitational force is ___ N?
Nastasia [14]

Answer:

The gravitational force is 130.

Explanation:

During this problem you have to multiply the 65 and the 0.6.

5 0
3 years ago
Other questions:
  • A person with a weight of 956 N runs up a 2.41 m staircase. If it takes 4.17 seconds to reach the top, how much power was genera
    7·1 answer
  • Find the x-components of this vector: 92.5 m, 32.0 degrees. Remember, angles are measured from the +x axis.
    7·1 answer
  • Someone please help me with this physics!
    10·1 answer
  • Your 64-cm-diameter car tire is rotating at 3.5 rev/s when suddenly you press down hard on the accelerator. After traveling 200
    6·1 answer
  • Find the kinetic energy of a 0.1-kilogram toy truck moving at the speed of 1.1 meters per second.
    14·1 answer
  • How many ounces in a liter
    8·1 answer
  • 2) How many significant figures are in the number 0.0037010?<br>​
    8·1 answer
  • D. What is one watt power? Calculate the power of
    13·1 answer
  • A satellite with a mass of 5.60 E5 kg is orbiting the Earth in a circular path at 7.037E 6 meters from
    13·1 answer
  • I really need help on this question, i cant figure out how to answer it, i really need help, everything is due tmrw, pls help
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!