Answer:
Explanation:
alpha
Alpha Radiation (α): A large, unstable nucleus decays to produce a smaller, more stable nucleus and an alpha particle (identical to a helium nucleus, ⁴₂He or ⁴₂α).
It has a very high ionizing energy and low penetrating power. It can be stopped by paper skin
Beta Radiation (β): A neutron in an unstable nucleus decays, forming a proton and emitting a beta (β) particle (identical to an electron, ⁰₋₁e or ⁰₋₁b) and resulting in a more stable nucleus.
It has high ionizing energy and penetrating power. It can be stopped by aluminium sheet
Gamma Radiation (γ): An unstable nucleus releases energy in the form of a high energy photon (no mass)to become more stable; this often accompanies other forms of radioactivity.
It has very high penetrating power and very low ionizing energy. It can be stopped by lead block.
Your answer is C)
a)t=2.78 sec
b)R=835.03 m
c)
Explanation:
Given that
h= 38 m
u=300 m/s
here given that
The finally y=0
So
t=2.78 sec
The horizontal distance,R
R= u x t
R=300 x 2.78
R=835.03 m
The vertical component of velocity before the strike
In a nuclear power plant, you start off with uranium (nuclear energy), and a lot of that nuclear energy is released by heat energy. Heat then boils water and drives a turbine for a generator, which creates kinetic energy, which produces electrical energy.
In other words, your answer is B.
Answer:
your answer is different than mine