This is pretty easy lol.... AS and AR
Answer:A mole is an arbitrary number of molecules in a single unit - refer to avogadro's number. Essentially, 1 mole is 6.022x10^23 molecules for ALL molecules or atoms, however one must remember that not all atoms/molecules are the same size, this is where mass comes into play. When you measure out 2 grams of carbon powder, there will be a lot more molecules present than if you weighed out 2 grams of thorium powder; this is because carbon is much smaller - kind of like a car filled with clowns, one given car can hold a lot of small clowns but only a few big ones; so the same volume is occupied but the amount of substance (clowns) varies on their own size. The arbitrary mass (relative to the hydrogen atom) for a molecule is the sum of its atomic components' atomic masses; e. g. C2H6's will have 2x12.00 (carbon) + 6x1.01 (hydrogen) = ~30 grams / mole.
Explanation:
B - The reactants are the starting substances and the products are the end substances.
The boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
<h3>What is the boiling point?</h3>
The boiling point is the temperature at which the pressure exerted by the surroundings upon a liquid is equalled by the pressure exerted by the vapour of the liquid.
has weak dispersion force attractions between its molecules, whereas liquid HF has strong ionic interactions between
and
ions.
Only London Forces are formed - Therefore more energy is required to break the intermolecular forces in HF than in the other hydrogen halides and so HF has a higher boiling point.
and
will only have intra-molecular attractions and there will be no hydrogen bonds present in them. As a result, their boiling point will be lower.
Hence, the boiling point of HF is higher than the boiling point of
, and it is higher than the boiling point of
.
Learn more about the boiling point:
brainly.com/question/25777663
#SPJ1
Answer:
The correct answer is D
Explanation:
Many substances hold their molecules together in the liquid or solid bosom. This is due, in addition to the pressure and temperature conditions, by the forces of Van der Waals. These are still produced in nonpolar molecules by the movement of electrons through the molecules; in extremely short periods of time, their electrons "charge" towards one end of the molecule, producing small dipoles and keeping the molecules very close to each other.