

<h2><em>hope</em><em> it</em><em> helps</em></h2>
Answer:
mass (g) needed = 710.2 grams Na₂SO₄(s)
Explanation:
Needed is 2.5 Liters of 2.0M Na₂SO₄; formula wt Na₂SO₄ = 142.04g/mol.
mass (grams) of Na₂SO₄(s) = Molarity needed x Volume needed in Liters x Formula Wt of solute
mass (grams) of Na₂SO₄(s) = (2.5L)(2.0M)(142.04g/mol) = 710.2 grams Na₂SO₄(s)
Mixing: Transfer 710.4 grams Na₂SO₄ into mixing vessel and add water-solvent up to but not to exceed 2.5 Liters total volume. Mix until dissolved.
Gives 2.5 Liters of 2.0M Na₂SO₄(aq) solution.
Answer:
ΔU° = 56.0 J
Explanation:
Step 1: Given data
- Work done to compress the gas (w): 83.0 J (When work is done on the gas, w is positive).
- Heat given off to the surroundings (q): -27.0 J (When heat is released to the surroundings, q is negative)
Step 2: Calculate the change in the internal energy of the gas (ΔU°)
The internal energy of a gas is the energy contained within it. We can calculate it using the following expression.
ΔU° = q + w
ΔU° = -27.0 J + 83.0 J
ΔU° = 56.0 J
1 wavelength, 2 crest, 3 trough, 4 wave height <3