Answer:
Meter
Explanation:
I'd say meters, cause it's the SI unit of length,
which is a Derived Quantity.
Answer:
<em>The first law states that</em> every planet describes an elliptical path about the sun as a single focus.
<em>The</em><em> </em><em>second</em><em> </em><em>law</em><em> </em><em>states</em><em> </em><em>that</em><em> </em>The line joining the planet to the sun sweeps out equal areas in equal time intervals.
<em>The</em><em> </em><em>third</em><em> </em><em>law</em><em> </em><em>states</em><em> </em><em>that</em><em> </em>The squares of the period of revolution is proportional to the cubes of the mean distance between the planet and the sun
The tension in the string corresponds to the gravitational attraction between the Sun and any planet.
The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>
Description:
As we know that the sun offers what most of the world has to go examples could be energy, air. As we also know that heating causes liquid and water that is frozen to evaporate to water vapour gas. Meaning the sun provides the energy necessary for evaporation.
Answer: B
Please mark brainliest
<em><u>Hope this helps.</u></em>