Explanation:
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased
Magnetic stripes on the sea floor
Explanation:
The observation of magnetic stripes patterns at the region of the Mid-Atlantic Ridge galvanized the evidence that sea floor spreading has been on for several millions of years.
- Geomagnetic field of the earth is similar to that of bar magnet having the north and south pole.
- It originates from the movement of iron-nickel within the outer core.
- This geomagnetic field causes the magnetization of magnetic minerals in rock.
- When freshly formed magma is brought to the surface at the mid oceanic ridge area, the prevailing magnetic field causes the magnetic minerals in the magma to cool in such a way that they align their domains to that of the field.
- The magnetic field of the earth can reverse and take different geometry. Sometimes, its intensity is very strong and at other times it is weak.
- The magnetic minerals in melts bear these records.
- As new materials are brought up, they get magnetized.
Learn more:
Sea floor spreading brainly.com/question/9912731
#learnwithBrainly
Correct answer is A.
In a parallel circuit, the voltage is same across all the branches however the current in each branch is different and depends on the resistance of that branch. The higher the resistance, the lower the current.
In a series circuit, the voltage across each resistive element is different and depends on the resistance of that element. Higher the resistance, larger will be the voltage drop. However, the current throughout the series circuit is the same as there is only path in a series circuit.
Points to Remember:
1) In series circuit current remains the same and voltage varies
2) In parallel circuit voltage remains the same and current varies
Answer:
1.274 H
Explanation:
using
V = XLI...................Equation 1
Where V = voltage, XL = Inductive reactance, I = current.
Make XL the subject of the equation
XL = V/I.............. Equation 2
Given: V = 6.00 V, I = 3.00 mA = 0.003 A
Substitute into equation 2
XL = 6/0.003
XL = 2000 Ω
But,
XL = 2πFL............... Equation 3
Where F = Frequency, L = inductance.
Make L the subject of the equation
L = XL/(2πF).............. Equation 4
Given: F = 250 Hz, XL = 2000 Ω
Constant: π = 3.14
L = 2000/(2×3.14×250)
L = 2000/1570
L = 1.274 H.
Answer:
37.91594 keV
Explanation:
= Incident energy = 400 keV
θ = 30°
h = Planck's constant = 4.135×10⁻¹⁵ eV s = 6.626×10⁻³⁴ J s
Incident photon wavelength

Difference in wavelength


Final photon wavelength

Energy of the recoiling electron

Energy of the recoiling electron is 37.91594 keV