Answer:
d. Boyle's
Explanation:
Boyle's Law: States that the volume of a fixed mass of gas is inversely proportional proportional to its pressure, provided temperature remains constant.
Stating this mathematically. this implies that:
V∝1/P
V = k/P, Where k is the constant of proportionality
PV = k
P₁V₁ = P₂V₂
Where P₁ and P₂ are the initial and final pressure respectively, V₁ and V₂ are the the initial and final volume respectively.
Hence the right option is d. Boyle's
Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N
Heat absorbed by the solar collector = Area*Irradiance = 5.3*995 = 5273.5 W
Heat Q in joules absorbed in t hours = Heat used to heat water. That is,
5273.5*t = mCΔT; where mass = volume*density = 1*1000 = 1000 kg
Therefore;
5273.5t = 1000*4186*(65-20) = 188370000
t = 188370000/5273.5 = 35720.11 seconds = 35720.11/(60*60) hours ≈ 9.92 hours.
It will take approximately 9.92 hours.
Step 1: list known info
distance(change in position (Δx))= 18m+22m= 40m
time= 20 seconds
Step 2 :solve for velocity
velocity= Δx÷time
v= 40/20= 2m/s
Answer: the velocity is 2 meters per a second (m/s)