Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.
The concept that we need here to give a proper solution is mutual inductance.
The mutual inductance is given by the expression

Where,
I = current
N = Number of turns
Flux through the solenoid.
Part A) Then we have in our values that,



Replacing in the equation,


Part B) Here is required the Flux, then using the same expression we have that

We conserve the same value for the Inductance but now we have a current of 2.6, then


Therefore the flux in Solenoid 1 is 
Fine, lets do a retry of this.
Δd = -0.9m
v₁ = 0
v₂ = ?
a = -9.8 m/s²
Δt = ?
We can use the following kinematic equation and solve for Δt.
Δd = v₁Δt + 0.5(a)(Δt)²
Δd = 0.5(a)(Δt)²
2Δd = a(Δt)²
√2Δd/a = Δt
√2(-0.9m)/(-9.8 m/s²) = Δt
0.<u>4</u>28571428574048 = Δt
Therefore, it takes 0.4 seconds for the glass to hit the ground, or 0.43s as you said (even though I don't believe it follows significant digit rules)
Answer:
(b) Yes, the earth gains momentum but the change in momentum of the earth is much lesser compared to that of everyone in the air. The resistance to motion (inertia of the earth), which is a function of its mass is so great that the earth's acceleration is small in the given time frame.
Explanation:
From Newton's second law which can be stated mathematically as
F = m(v-u)/t = ma.
By Newton's law of gravitation, there is a force between the earth and everyone in the air. This force is responsible for the change in momentum of everyone in the air and this force gives them an acceleration equal to g = 9.80m/s². By Newton's law of gravitation and Newton's third law of motion, this force is also equal to the force exerted by everyone on the earth.
For this to be true,
F = M (everyone) ×a (everyone) = M(earth) × a (earth).
And
a (earth) = {M (everyone) ×a (everyone) }/M (earth)
Then
a (earth) must be lesser than a (everyone) since M(earth) >> M(everyone).
a = change in momentum/ time
Therefore the earth will have a much lesser change in momentum which is the reason we won't notice the earth's movement.
Thank you for reading.