Answer:
given , v = 300 km/hr; distance d = 1500 km; then time t = d/v = 1500/300 = 5 hrs
Explanation:
Answer:
change in entropy is 1.44 kJ/ K
Explanation:
from steam tables
At 150 kPa
specific volume
Vf = 0.001053 m^3/kg
vg = 1.1594 m^3/kg
specific entropy values are
Sf = 1.4337 kJ/kg K
Sfg = 5.789 kJ/kg
initial specific volume is calculated as





FROM STEAM Table
at 200 kPa
specific volume
Vf = 0.001061 m^3/kg
vg = 0.88578 m^3/kg
specific entropy values are
Sf = 1.5302 kJ/kg K
Sfg = 5.5698 kJ/kg
constant volume so




Change in entropy 
=3( 3.36035 - 2.88) = 1.44 kJ/kg
Answer:
No you can't cuz,if you put water instead of clock oil in Millikan oil drop your experiment will fail and it won't turn out the way you wanted it to be
Answer:
a) 
Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

b) 
And we can find the positions for the two times required like this:
And now we can replace and we got:

Explanation:
The particle position is given by:

Part a
In order to find the velocity we need to take the first derivate for the position function like this:

Now we can replace the velocity for t=1.75 s

For t = 3.0 s we have:

Part b
For this case we can find the average velocity with the following formula:

And we can find the positions for the two times required like this:
And now we can replace and we got:

Answer:
Temperature, T = 1542.10 K
Explanation:
It is given that,
The black body radiation emitted from a furnace peaks at a wavelength of, 
We need to find the temperature inside the furnace. The relationship between the temperature and the wavelength is given by Wein's law i.e.

or

b = Wein's displacement constant



T = 1542.10 K
So, the temperature inside the furnace is 1542.10 K. Hence, this is the required solution.