Answer:
It means the chemical entity is a radical
Explanation:
When we talk of unsaturation, we are referring to the number of pi-bonds in a chemical entity. The alkane, alkene and alkyne organic family are used to as common examples to explain the term unsaturation.
While alkynes have 3 bonds, it must be understood that they have 2 pi bonds only and as such their degree of saturation is two.
In the case of an alkene, there is only one single pi bond and as such the degree of unsaturation is 1.
Now in this case, we have a fractional 0.5 degree of unsaturation alongside the 3 to make a total of 3.5. So what’s the issue here?
The fractional part shows that the chemical entity we are dealing with here is a radical. While the integer 3 shows that there are 3 pi-bonds, the half pi bond remaining tells us that there is a missing electron on one of the atoms involved in the chemical bonding and as such, the 1/2 extra degree of unsaturation tends to tell us this.
Kindly recall that a radical is a chemical entity within which we have at the least an unpaired electron.
Answer:
add me!!!
Explanation:
my insta is: becomewhatyouwant2inlife
1. Pure substances cannot be separated into any other kinds of matter, while a mixture is a combination of two or more pure substances.
2. A pure substance has constant physical and chemical properties, while mixtures have varying physical and chemical properties (i.e., boiling point and melting point).
3. A pure substance is pure, while a mixture is impure.
Answer:
What that means is that when pressure and number of moles are kept constant, increasing the temperature will result in an increase in volume. Likewise, a decrease in temperature will result in a decrease in volume. In your case, the volume of the gas decreased by a factor of about 3, from "140.0 mL" to "50.0 mL".
Explanation:
the lone pairs will be negatively charged. these have a repulsion effect on other negatively charged electrons in the shells of atoms. picture a water molecule: the lone electron pair on the top of the oxygen will have a repulsion force on the 2 hydrogen atom's orbiting electrons to cause a bent molecular geometry.