Answer:
a) b = -5
b) slope = 3/2
Explanation:
a) The equation of a line is given as y = mx + b, where m is the slope of the line and b is the intercept on the y axis.
Given that y = 3x + b and it passes through the point (2, 1). Hence when x = 2, y = 1. Therefore, substituting for x and y:
1 = 3(2) + b
1 = 6 + b
b = 1 - 6
b = -5
b) The equation of a line passing through two points (
) and
is given by:

The equation of the line passing through the two points (0,3) and (4,9) is:

Comparing y = (3/2)x + 3 with y = mx + b, the slope (m) is 3/2
The answer for this change in the magnitude of momentum is the same for both because momentum is always conserved so both vehicles have the identical change.
So for determining who has the greater change in kinetic energy, momentum (P) = mv so P^2 = m^2 v^2 P^2 / 2m = 1/2 m v^2 = energy So the weightier the mass the smaller the energy change for the same momentum change so in here, the car has a greater change in kinetic energy.
The two additional forces that act on the ball as it travels between the pitcher and the home plate are air resistance and gravity.
<h3>What are the forces that affect object in motion;</h3>
- Air resistance: this is the force that oppose the motion of an object in air due to frictional force
- Gravity: this is the force due to weight of the object and acts downwards.
The two additional forces that act on the ball as it travels between the pitcher and the home plate include:
- Air resistance and
- Gravitational force
<h3>How the forces affect the motion of the ball</h3>
- Air resistance oppose the motion of the ball as it travels in air.
- Gravity is the force due to weight of the ball and acts downwards.
Learn more about forces on object in motion here: brainly.com/question/10454047
I have no idea I am sorry someone will help you soon