Answer:
because cycle is a prosess that goes through multiple stages
Explanation:
.
Since the question manages to include moles, pressure, volume, and temperature, then it is evident that in order to find the answer we will have to use the Ideal Gas Equation: PV = nRT (where P = pressure; V = volume; n = number of moles; R = the Universal Constant [0.082 L·atm/mol·K]; and temperature.
First, in order to work out the questions, there is a need to convert the volume to Litres and the temperature to Kelvin based on the equation:
250 mL = 0.250 L
58 °C = 331 K
Also, based on the equation P = nRT ÷ V
⇒ P = (2.48 mol)(0.082 L · atm/mol · K)(331 K) ÷ 0.250 L
⇒ P = (67.31 L · atm) ÷ 0.250 L
⇒ P = 269.25 atm
Thus the pressure exerted by the gas in the container is 269.25 atm.
Answer:
Frequency, f = 0.6 Hz
Explanation:
We have,
Number of waves passing through a point are 3
Time for which the waves are passing is 5 seconds
It is required to find the frequency of a wave. The frequency of a wave is defined as the no of waves per unit time. So,

So, the frequency of a wave is 0.6 Hz.
Answer:
The classification and illustrations are attached in the drawing.
Explanation:
It is possible to identify the pure substance observing the figure, since it is the only one that has 2 joined atoms (purple and blue) which forms a single compound.
On the other hand, the homogeneous mixture is identified by noting that its atoms are more united with respect to the heterogeneous mixture, highlighting that in homogenous mixtures the atoms, elements or substances are not visible to the naked eye and are in a single phase, instead in the heterogeneous mixture if they can be differentiated.