Answer:
The work done on the hose by the time the hose reaches its relaxed length is 776.16 Joules
Explanation:
The given spring constant of the of the spring, k = 88.0 N/m
The length by which the hose is stretched, x = 4.20 m
For the hose that obeys Hooke's law, and the principle of conservation of energy, the work done by the force from the hose is equal to the potential energy given to the hose
The elastic potential energy, P.E., of a compressed spring is given as follows;
P.E. = 1/2·k·x²
∴ The potential energy given to hose, P.E. = 1/2 × 88.0 N/m × (4.20 m)²
1/2 × 88.0 N/m × (4.20 m)² = 776.16 J
The work done on the hose = The potential energy given to hose, P.E. = 776.16 J
Answer:
2.029×10^-18 J
Explanation:
E=hv
so
E=(3.06×10^15)*(6.63×10^-34)
E=2.029×10^-18 J
I believe it is called centripetal force <span />
By dropping a ball and seeing how long it takes to hit the ground or throw a ball up and time it as well