Power = work/time = (Force times distance)/time
= (30N *10.0m)/5.00s = 300/5 = 60 Watts
It takes sunlight 8 minutes to reach earth , so yes
The approximate amount of thrust(force) you need to apply to the lander to
keep its velocity roughly constant is zero.
<h3>What is Newton's second law of motion?</h3>
Newton's second law of motion states that the acceleration the force acting
on the object is directly proportional to its rate of change of momentum.
F = m a
If the object is moving with uniform velocity, it simply means that the
acceleration is zero, and the corresponding force will also be zero.
Read more about Constant velocity here brainly.com/question/3052539
Answer:
The electron's speed is 34007.35 m/s
Explanation:
It is given that,
Magnetic field, B = 0.34 T
Magnetic force on the electron, 
The electron follows a helical path. We have to find the speed of an electron. The formula for magnetic force is given by :

q = charge on an electron, 
v = velocity of an electron


v = 34007.35 m/s
Hence, this is the required solution.
Answer:
time=4s
Explanation:
we know that in a RL circuit with a resistance R, an inductance L and a battery of emf E, the current (i) will vary in following fashion
, where
max=
Given that, at i(2)=
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
Now substitute 
⇒
⇒
⇒
Applying logarithm on both sides,
⇒
⇒
⇒
now subs. 
⇒
also 
⇒
⇒