Answer:
72 m/s
Explanation:
D1 = 3 cm, v1 = 2 m/s
D2 = 0.5 cm,
Let the velocity at narrow end be v2.
By use of equation of continuity
A1 v1 = A2 v2
3.14 × 3 × 3 × 2 = 3.14 × 0.5 ×0.5 × v2
v2 = 72 m/s
Answer:
a) The angular acceleration of the beam is 0.5 rad/s²CW (direction clockwise due the tangential acceleration is positive)
b) The acceleration of point A is 3.25 m/s²
The acceleration of point E is 0.75 m/s²
Explanation:
a) The relative acceleration of B with respect to D is equal:

Where
aB = absolute acceleration of point B = 2.5 j (m/s²)
aD = absolute acceleration of point D = 1.5 j (m/s²)
(aB/D)n = relative acceleration of point B respect to D (normal direction BD) = 0, no angular velocity of the beam
(aB/D)t = relative acceleration of point B respect to D (tangential direction BD)


We have that
(aB/D)t = BDα
Where α = acceleration of the beam
BDα = 1 m/s²
Where
BD = 2

b) The acceleration of point A is:

(aA/D)t = ADαj

The acceleration of point E is:
(aE/D)t = -EDαj

Answer:
Bubbles paused
Explanation:
the air bubble doesn't rise because it is no lighter than the water around it—there's no buoyancy. The droplet doesn't fall from the leaf because there's no force to pull it off. It's stuck there by molecular adhesion.
for instance, onto the International Space Station, gravity becomes negligible, and the laws of physics act differently than here on Earth
On Earth, the buoyancy of the air bubbles causes them to rise to the top together, creating a segregation between air and water. However, in microgravity, nothing forces the air bubbles to interact and thus rise together, Green said.
Answer:
2090 J
Explanation:
the work done to move the cart is equal to the product between the force applied and the distance traveled:

In this case, the force applied is F=209 N, while the distance covered is d=10 m, therefore the work done is
