Answer:
Explanation:
1 = The given chemical reaction does not follow the law of conservation of mass because,
2 = Four hydrogen atoms are present in reactant side and two hydrogen atoms are present in product side.
3 = 1 ) The given chemical reaction does not follow the law of conservation of mass because,
CH₄ + O₂ → CO₂ + H₂O
16 g + 32 g 44 g + 18 g
48 g 62 g
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
Answer:
45.4 L
Explanation:
Using Ideal gas equation for same mole of gas as
Given ,
V₁ = 27.9 L
V₂ = ?
P₁ = 732 mmHg
P₂ = 385 mmHg
T₁ = 30.1 ºC
T₂ = -13.6 ºC
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (30.1 + 273.15) K = 303.25 K
T₂ = (-13.6 + 273.15) K = 259.55 K
Using above equation as:


Solving for V₂ , we get:
<u>V₂ = 45.4 L</u>
Answer:
The nitrogen cycle is a repeating cycle of processes during which nitrogen moves through both living and non-living things: the atmosphere, soil, water, plants, animals and bacteria. In order to move through the different parts of the cycle, nitrogen must change forms.
Explanation:
Answer:
0.925 moles of Nickel (II) chloride
Explanation:
Now, we know that the number of moles in a solution is given by;
n=CV
n= number of moles
C= molar concentration of solution = 0.925 M
V= volume of solution= 1.0 L
So having known all the parameters except the unknown (number of moles of Nickel (II) chloride) we can now proceed to find the unknown.
n= 0.925M ×1.0L
n= 0.925 moles of Nickel (II) chloride