The chemical reaction in which number of atoms of each element present in the reactant side is equal to the number of atoms of that element in product side, such reactions are said to be a balanced chemical reaction.
The chemical symbol for sodium is
.
The chemical symbol for fluorine gas is
.
The chemical symbol for sodium fluoride is 
The sodium fluoride is prepared from the reaction between sodium metal and fluorine gas can be written as:

The above reaction is not balanced as the number of fluorine atoms are not same on reactant and product side. So, in order to balance the reaction we will multiply
with 2 on reactant side and
with 2 on product side. Thus, the balanced reaction will be:

Thus, the balanced chemical equation is
.
Answer:
H3PO4 + 5 HCl → PCl5 + 4 H2O
Explanation:
The given equation is
H3PO4 + HCl = PCl5 + H2O
The above chemical equation has one P atom on both the sides, hence phosphorus is balanced
There are 5 Cl on the RHS but only one Cl on the LHS. On balancing the chlorine, we get -
H3PO4 + 5HCl = PCl5 + H2O
Now, there are 8 hydrogen atom on the LHS but only two on the RHS. On balancing the hydrogen on both the sides, the new equation become
H3PO4 + 5HCl = PCl5 + 4H2O
Let us check for oxygen
Oxygen on LHS = 4 and oxygen on RHS = 4
Thus, the balanced equation is H3PO4 + 5HCl = PCl5 + 4H2O
Answer:
Q = 4019.4 J
Explanation:
Given data:
Mass of ice = 20.0 g
Initial temperature = -10°C
Final temperature = 89.0°C
Amount of heat required = ?
Solution:
specific heat capacity of ice is 2.03 J/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 89.0°C - (-10°C)
ΔT = 99°C
Q = 20.0 g ×2.03 J/g.°C × 99°C
Q = 4019.4 J
Answer:
Judges and justices serve no fixed term — they serve until their death, retirement, or conviction by the Senate. By design, this insulates them from the temporary passions of the public, and allows them to apply the law with only justice in mind, and not electoral or political concerns.
Answer : The thermal energy produced during the complete combustion of one mole of cymene is -7193 kJ/mole
Explanation :
First we have to calculate the heat released by the combustion.

where,
q = heat released = ?
= specific heat of calorimeter = 
= change in temperature = 
Now put all the given values in the above formula, we get:


Thus, the heat released by the combustion = 70.43 kJ
Now we have to calculate the molar enthalpy combustion.

where,
= molar enthalpy combustion = ?
q = heat released = 70.43 kJ
n = number of moles cymene = 

Therefore, the thermal energy produced during the complete combustion of one mole of cymene is -7193 kJ/mole