1. The molar mass of the unknown gas obtained is 0.096 g/mol
2. The pressure of the oxygen gas in the tank is 1.524 atm
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>1. How to determine the molar mass of the gas </h3>
- Rate of unknown gas (R₁) = 11.1 mins
- Rate of H₂ (R₂) = 2.42 mins
- Molar mass of H₂ (M₂) = 2.02 g/mol
- Molar mass of unknown gas (M₁) =?
R₁/R₂ = √(M₂/M₁)
11.1 / 2.42 = √(2.02 / M₁)
Square both side
(11.1 / 2.42)² = 2.02 / M₁
Cross multiply
(11.1 / 2.42)² × M₁ = 2.02
Divide both side by (11.1 / 2.42)²
M₁ = 2.02 / (11.1 / 2.42)²
M₁ = 0.096 g/mol
<h3>2. How to determine the pressure of O₂</h3>
From the question given above, the following data were obtained:
- Volume (V) = 438 L
- Mass of O₂ = 0.885 kg = 885 g
- Molar mass of O₂ = 32 g/mol
- Mole of of O₂ (n) = 885 / 32 = 27.65625 moles
- Temperature (T) = 21 °C = 21 + 273 = 294 K
- Gas constant (R) = 0.0821 atm.L/Kmol
The pressure of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both side by V
P = nRT / V
P = (27.65625 × 0.0821 × 294) / 438
P = 1.524 atm
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
Learn more about ideal gas equation:
brainly.com/question/4147359
Answer: D)The distance from Earth and mass of ISS exert negligible gravitational force on the astronaut.
Explanation:
The distance from Earth and mass of ISS exert negligible gravitational force on the astronaut. Gravity is a very weak force and varies with mass and the inverse square of distance. The astronaut's distance from Earth and the relative small mass of ISS result in gravitational force near zero.
The volume of the 18M HCl needed to make the solution will be 2.5 mL.
<h3>Dilution</h3>
According to the dilution principle, the number of moles of solutes in a solution before and after dilution must remain the same.
Since, mole = molarity x volume
Thus, molarity x volume before dilution = molarity x volume after dilution.
Mathematically, the equation is written as: m1v1 = m2v2
In this case, m1 = 18 M, m2 = 1.5 M, and v2 = 30 mL.
What we are looking for is v1, the amount of the stock HCl needed for dilution.
v1 = m2v2/m1 = 1.5 x 30/18 = 2.5 mL.
Thus, 2.5 mL of the stock HCl would be needed.
More on dilution can be found here: brainly.com/question/21323871
#SPJ1
Hey there!:
ΔTf = Kf * m
Molar mass glucose = 180 g/mol
number of moles glucose:
n = mass of solute / molar mass
n = 21.5 / 180
n = 0.119 moles glucose
Amount of solvent in kg = 255/1000 = 0.255 Kg
Molality = number of moles / solvent
m = 0.119 / 0.255
m = 0.466 moles/kg
Kf for water = - 1.86 ºC/*m
Therefore:
ΔTf = Kf * m
ΔTf = (-1,86) * 0.466
ΔTf = -0.86676 ºC
hope this helps!
The total number of protons and neutrons in a nucleus