Answer:
Speed - scalar
Velocity - vector
Displacement - vector
Distance - scalar
Measurement - scalar
Measurement and direction - vector
60 m north - vector
100 m west - vector
200 m/s - scalar.
Answer:
Well this is tough. I'm not sure but you are smart and can push through it. YOU DONT need the someone telling you the answer when it is inside you.
hope this helps p
Answer: c opinion is something ppl just suggest but a theory needs proof before it is confirmed
<h2>
Answer: Invariance of the speed of light in vacuum </h2>
Special relativity was proposed on 1905 by Einstein, who developed his theory based on the following two postulates:
<em>1. The laws of physics are the same in all inertial systems. There is no preferential system. </em>
<em>2. The speed of light in vacuum has the same value for all inertial systems. </em>
<em></em>
Focusing on the first postulate, it can be affirmed that any measurement on a body is made with reference to the system in which it is being measured.
In addition, it deals with the <u>dilation of time</u> stating that <u>time passes at different rates in regions of different gravitational potential</u>. That is, the greater the local distortion of space-time due to gravity, the slower the time passes.
On the other hand, following what relativity establishes, bodies within a gravitational field follow a curved space path.
Answer:
The magnitude of the net force is 5430N
Explanation:
I suggest to define the axes as aligned to the axis of the plane. This will require you to decompose only one vector, namely the Weight. We need two components of the W force: one in horizontal direction of the plane, the other perpendicular to it. Through a simple triangle argument you will se that the plane-horizontal component of W is

acting in the direction of the Drag, and the plane-perpendicular component is:

with negative sign since it counteracts the Lift.
So the components of the netforce F are:

The magnitude of the net force is:
