Answer: North of west
Explanation:
Given
Plane wishes to fly in west
but wind with speed 33.9 km/h towards south obstructing its path
so plane must fly at an angle of \theta w.r.t west such that it final velocity is towards west
Plane absolute speed=195 km/h
To fly towards west velocity in Y direction should be zero
thus
so Plane should head towards North of west in order to fly in west.
So plane
actual velocity is
Answer: a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
Explanation:
Acceleration is the rate of change in the velocity per time
a = change in velocity/time
a = ∆v/t
average acceleration a = (v2 -v1)/t. ....1
Given;
Final velocity v2 = 1.63m/s
Initial velocity v1 = -1.15ms
time taken t = 2.11s
Substituting into eqn 1
a = [1.63 - (-1.15)]/2.11
a = (1.63+1.15)/2.11
a = 2.78/2.11
a = 1.32m/s2
Therefore, the average acceleration is 1.32m/s2
The Moment of Inertia of the Disc is represented by . (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- - Moment of inertia of the Disk.
- - Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole ():
And the resulting equation is:
The moment of inertia of the Disc is represented by . (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709
Answer:
answer a: a large front gear with a small back gear
answer b: a small front gear with a large back gear
Explanation:
just simple gearing ratios
Links do not help buddy stop doing it on everything !!!!!!