The correct answer would be false. The less internal heat a jovian planet emits the lesser it stirs up its clouds making the atmosphere hotter. All of the four Jovian planets have unique atmospheres. They have more or less the same structures but they differ in their average temperature. As the distance of the planet is closer to the sun the atmosphere would be cooler. These planets are Jupiter, Saturn, Uranus and Neptune. They do not have a solid structure instead they are primarily composed of helium and hydrogen which makes them gas giants or ice planets. They are larger in size than the remaining planets in the solar system.
I believe the answer is the white dwarf.
The sun will cool then heat up again is my understanding. Hope this helps
For this case, in the next item we have gravitational potential energy:
An apple in a tree.
Suppose we define our reference system at the floor level.
Suppose the apple is at a height h from the floor and has mass m.
The gravitational potential energy of the apple is given by:
U = mgh
Where,
m: apple mass
h: height of the apple with respect to the floor
g: acceleration due to gravity
Answer:
C) an apple on a tree
Answer:
400m
Explanation:
use formula
velocity = displacement /time
Answer:

Explanation:
In this case we have to use the Principle of conservation of Momentum:
<em>This principle says that in a system the total momentum is constant if no external forces act in the system. The formula is:</em>

<em>Where:</em>
Mass of the first object.
Mass of the second object.
Initial velocity of the first object.
Initial velocity of the second object.
Final velocity of the first object.
Final velocity of the second object.
In <u>this problem</u> we have:


Observation:
Is because the system has the same initial velocity.
First we have to find
,

We can rewrite it as:

Replacing with the data:

We found the final velocity of the cart, but the problem asks for the resulting change in the cart speed, this means:

Then, the resulting change in the cart speed is:
