Today we can make observations that would lead us to the same conclusion as newton. If you throw a baseball in the air, it always comes back down. This is because of gravity. duh.
Which data set has the largest range? A. 55, 57, 59, 60, 61, 49, 48 B. 21, 25, 14, 16, 29, 22, 20 C. 12, 15, 16, 19, 18, 15, 27
Simora [160]
Data D has the largest range.
Data A: 61-48=13
Data B: 29-14=15
Data C:27-12=15
Data D:54-31=23
Therefore, Data D has the largest range.
Answer:
0.84 m
Explanation:
Given in the y direction:
Δy = 0.60 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
0.60 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.35 s
Given in the x direction:
v₀ = 2.4 m/s
a = 0 m/s²
t = 0.35 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (2.4 m/s) (0.35 s) + ½ (0 m/s²) (0.35 s)²
Δx = 0.84 m
Answer:
T₂ = 95.56°C
Explanation:
The final resistance of a material after being heated is given by the relation:
R' = R(1 + αΔT)
where,
R' = Final Resistance = 207.4 Ω
R = Initial Resistance = 154.9 Ω
α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹
ΔT = Change in Temperature = ?
Therefore,
207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]
207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT
1.34 - 1 = (0.0045°C⁻¹)ΔT
ΔT = 0.34/0.0045°C⁻¹
ΔT = 75.56°C
but,
ΔT = Final Temperature - Initial Temperature
ΔT = T₂ - T₁ = T₂ - 20°C
T₂ - 20°C = 75.56°C
T₂ = 75.56°C + 20°C
<u>T₂ = 95.56°C</u>
Answer:
1) Newton's first law of motion states an object will remain at rest or in uniform will be in uniform motion in a straight line unless a force acts on it
2) Newton's second law states the acceleration of an object is directly proportional to the applied force acting on an object and inversely proportional to the mass of the object
Explanation:
1) With Newton's first law, we are able arrange things within a space and schedule meetings in time knowing that they will remain in place unless an external force changes their positions
2) An example of Newton's second law of motion is that small objects such as a ball are easily accelerated and can be given appreciable acceleration for flight by single, one time contact (such as kicking the ball) while larger objects such as a rock require sustained force application to change their location.