1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marysya12 [62]
3 years ago
15

Xenon reacts with fluorine to produce xenon tetrafluoride. What is the mass in grams of XeF4 produced when 3.20 L Xe reacts with

excess fluorine?
a 29.6 g
b 31.5 g
c 35.1 g
d 38.0 g
Chemistry
1 answer:
valentina_108 [34]3 years ago
6 0
It’s either a or b, but I’m not sure which one it really is, but I hoped I helped a little /:).
You might be interested in
What is difference between groups and periods? 8th grade science idk what to put it under
d1i1m1o1n [39]
One is rows the other is columns
7 0
3 years ago
Pure metals tend to be weaker and more reactive than an alloy which is a
Alex17521 [72]
Alloys are supposed to give greater strength to metals, which is why gold is mixed with others to make it harder. They have greater strength and are more resistant to erosion.
5 0
3 years ago
How do we differentiate chemical change from physical change ​
bija089 [108]

Answer:

Chemical change :has change in mass, heat is needed, new element is formed, hard to reverse.......

Physicalchange:does not have change in mass, heat is not necessary, no new element is formed, easy to reverse

5 0
3 years ago
How many unpaired electrons are in the c 2 + ​ ion?
sladkih [1.3K]
Atomic number of C is 6. Hence, there are 6 electrons in carbon.

The electronic configuration of carbon is 1s2, 2s2, 2p2

Here, there are 2 unpaired electron. However, C2+ ions have 2 electrons less as compared to C.

Hence, electronic configuration of C 2+ ion is 1s2, 2s2. All the electrons are paired in this system. So there are no unpaired electrons in C 2+ ion. 
7 0
4 years ago
The following data were collected for the rate of disappearance of NO in the reaction 2NO(g)+O2(g)→2NO2(g)::
Anit [1.1K]

Answer:

a) The rate law is: v = k[NO]² [O₂]

b) The units are: M⁻² s⁻¹

c) The average value of the constant is: 7.11 x 10³ M⁻² s⁻¹

d) The rate of disappearance of NO is 0.8 M/s

e) The rate of disappearance of O₂ is 0.4 M/s

Explanation:

The experimental rates obtained can be expressed as follows:

v1 = k ([NO]₁)ᵃ ([O₂]₁)ᵇ = 1.41 x 10⁻² M/s

v2 = k ([NO]₂)ᵃ ([O₂]₂)ᵇ = 5.64 x 10⁻² M/s

v3 = k ([NO]₃)ᵃ ([O₂]₃)ᵇ = 1.13 x 10⁻¹ M/s

where:

k = rate constant

[NO]₁ = concentration of NO in experiment 1

[NO]₂ = concentration of NO in experiment 2

[NO]₃ = concentration of NO in experiment 3

[O₂]₁ = concentration of O₂ in experiment 1

[O₂]₂ = concentration of O₂ in experiment 2

[O₂]₃ = concentration of O₂ in experiment 3

a and b = order of the reaction for each reactive respectively.

We can see these equivalences:

[NO]₂ = 2[NO]₁

[O₂]₂ = [O₂]₁

[NO]₃ = [NO]₂

[O₂]₃ = 2[O₂]₂

So, v2 can be written in terms of the concentrations used in experiment 1 replacing [NO]₂ for 2[NO]₁ and [O₂]₂ by [O₂]₁ :

v2 = k (2 [NO]₁)ᵃ ([O₂]₁)ᵇ

If we rationalize v2/v1, we will have:

v2/v1 = k *2ᵃ * ([NO]₁)ᵃ * ([O₂]₁)ᵇ / k * ([NO]₁)ᵃ * ([O₂]₁)ᵇ (the exponent "a" has been distributed)

v2/v1 = 2ᵃ

ln(v2/v1) = a ln2

ln(v2/v1) / ln 2 = a

a = 2

(Please review the logarithmic properties if neccesary)

In the same way, we can find b using the data from experiment 2 and 3 and writting v3 in terms of the concentrations used in experiment 2:

v3/v2 = k ([NO]₂)² * 2ᵇ * ([O₂]₁)ᵇ / k * ([NO]₂)² * ([O₂]₂)ᵇ

v3/v2 = 2ᵇ

ln(v3/v2) = b ln 2

ln(v3/v2) / ln 2 = b

b = 1

Then, the rate law for the reaction is:

<u>v = k[NO]² [O₂]</u>

Since the unit of v is M/s and the product of the concentrations will give a unit of M³, the units of k are:

M/s = k * M³

M/s * M⁻³ = k

<u>M⁻² s⁻¹ = k </u>

To obtain the value of k, we can solve this equation for every experiment:

k = v / [NO]² [O₂]

for experiment 1:

k = 1.41 x 10⁻² M/s / (0.0126 M)² * 0.0125 M = 7.11 x 10³ M⁻² s⁻¹

for experiment 2:

k = 7.11 x 10³ M⁻² s⁻¹

for experiment 3:

k = 7.12 x 10³ M⁻² s⁻¹

The average value of k is then:

(7.11 + 7.11 + 7.12) x 10³ M⁻² s⁻¹ / 3 = <u>7.11 x 10³ M⁻² s⁻¹ </u>

The rate of the reaction when [NO] = 0.0750 M and [O2] =0.0100 M is:

v = k [NO]² [O₂]

The rate of the reaction in terms of the disappearance of NO can be written this way:

v = 1/2(Δ [NO] / Δt) (it is divided by 2 because of the stoichiometric coefficient of NO)

where (Δ [NO] / Δt) is the rate of disappearance of NO.

Then, calculating v with the data provided by the problem:

v = 7.11 x 10³ M⁻² s⁻¹ * (0.0750M)² * 0.0100M = 0.4 M/s

Then, the rate of disappearance of NO will be:

2v = Δ [NO] / Δt = <u>0.8 M/s</u>

The rate of disappearance of O₂ has to be half the rate of disappearance of NO because two moles of NO react with one of O₂. Then Δ [O₂] / Δt = <u>0.4 M/s</u>

With calculations:

v = Δ [O₂] / Δt = 0.4 M/s (since the stoichiometric coefficient is 1, the rate of disappearance of O₂ equals the rate of the reaction).

3 0
3 years ago
Other questions:
  • 73g of HCL in 2.00l of HCL solution
    12·1 answer
  • Should a mortar and pestle should be used for grinding only one substance at a time
    11·1 answer
  • Which of the following will result in a chemical change?
    10·2 answers
  • Sound travels most quickly through solids because _____. solids have greater frequencies the molecules in solids are very close
    12·2 answers
  • Suppose you begin with an unknown volume of 8.61 m h2so4 and add enough water to make 5.00*102 ml of a 1.75 m h2so4 solution. wh
    10·1 answer
  • A sample of dangerously reactive fluorine gas is contained in a stainless steel container which has a 31 L capacity at a pressur
    13·1 answer
  • How many elements are in a isotope?
    12·1 answer
  • A first order reaction has a rate
    6·1 answer
  • What dose science do
    14·2 answers
  • Which of the following is/are considered alcohols?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!