Answer:
I choose D option because may be it's correct
Answer:
A. 
B. 
Explanation:
Hello!
In this case, since the undergoing chemical reaction between nitrogen and hydrogen is:

Thus we proceed as follows:
A. Here, we first need to compute the moles of ammonia yielded by each reactant, in order to identify the limiting one:

Thus, since nitrogen yields the fewest moles of ammonia, we realize it is the limiting reactant, so the theoretical yield, in grams, of ammonia is:

B. Finally, since the actual yield of ammonia is 1.23, the percent yield turns out:

Best regards!
a) 56g
<h3>Calculation:</h3>
At STP,
22.4 L of N₂ = 1 mol
We have given 44.8 L of N₂, therefore,
44.8 L of N₂ = 
=
mol
We know that,
1 mol of N₂ = 28 g
Hence,
2 mol of N₂ = 28 × 2
= 56g
Hence, there are 56 g of N₂ in 44.8 L of nitrogen gas.
Learn more about calculation at STP here:
brainly.com/question/9509278
#SPJ4
Answer:
A hypothesis is something you can test a theory is just a thought that you have.
Option B is correct,
With increase in concentration the density of reactants increases and the system becomes more crowded, the greater the reactants will come in contact with each other and collisions occur. If collision is in proper orientation and has optimum energy then its fruitful and yields product. So, the greater the number of reactants, the greater will be the chances of collision and the greater will be the production of products per unit time and hence, greater is the rate of reaction.