1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali [406]
3 years ago
11

A 1200-kg car initially at rest undergoes constant acceleration for 9.4 s, reaching a speed of 11 m/s. It then collides with a s

tationary car that has a perfectly elastic spring bumper. What is the final kinetic energy of the two car system?
Physics
1 answer:
Natalka [10]3 years ago
8 0

To solve this problem we will apply the principle of conservation of energy and the definition of kinematic energy as half the product between mass and squared velocity. So,

KE_i = KE_f

KE_f = \frac{1}{2} mv^2

Here,

m = Mass

V = Velocity

Replacing,

KE_f = \frac{1}{2} (12000)(11)^2

KE_f = 72600J

Therefore the  final kinetic energy of the two car system is 72.6kJ

You might be interested in
f your risk-aversion coefficient is A = 4 and you believe that the entire 1926–2015 period is representative of future expected
siniylev [52]

Answer:

The portfolio should invest 48.94% in equity while 51.05% in the T-bills.

Explanation:

As the complete question is not given here ,the table of data is missing which is as attached herewith.

From the maximized equation of the utility function it is evident that

Weight=\frac{E_M-r_f}{A\sigma_M^2}

For the equity, here as

  • Weight is percentage of the equity which is to be calculated
  • {E_M-r_f} is the Risk premium whose value as seen from the attached data for the period 1926-2015 is 8.30%
  • A is the risk aversion factor which is given as 4.
  • \sigma_M is the standard deviation of the portfolio which from the data for the period 1926-2015 is 20.59

By substituting values.

Weight=\frac{E_M-r_f}{A\sigma_M^2}\\Weight=\frac{8.30\%}{4(20.59\%)^2}\\Weight=0.4894 =48.94\%

So the weight of equity is 48.94%.

Now the weight of T bills is given as

Weight_{T-Bills}=1-Weight_{equity}\\Weight_{T-Bills}=1-0.4894\\Weight_{T-Bills}=0.5105=51.05\%\\

So  the weight of T-bills is 51.05%.

The portfolio should invest 48.94% in equity while 51.05% in the T-bills.

7 0
3 years ago
Determine the power that needs to besupplied by the fanifthe desired velocity is 0.05 m3/s and the cross-sectional area is 20 cm
Mariulka [41]

Answer:

A fan with an energy efficiency of 30 % would need 62.5 watts to bring a desired volume flow of 0.05 cubic meters per second through a cross-sectional area of 20 square centimeters.

Explanation:

Complete statement is: <em>Determine the power that needs to besupplied by the fan if the desired velocity is 0.05 cubic meters per second and the cross-sectional area is 20 square centimeters.</em>

From Thermodynamics and Fluid Mechanics we know that fans are devices that work at steady state which accelerate gases (i.e. air) with no changes in pressure. In this case, mechanical rotation energy is transformed into kinetic energy. If we include losses due to mechanical friction, the Principle of Energy Conservation presents the following equation:

\eta\cdot \dot W = \dot K

\dot W = \frac{\dot K}{\eta} (Eq. 1)

Where:

\eta - Efficiency of fan, dimensionless.

\dot W - Electric power supplied fan, measured in watts.

\dot K - Rate of change of kinetic energy of air in time, measured in watts.

From definition of kinetic energy, the equation above is now expanded:

\dot W = \frac{\rho_{a}\cdot \dot V}{2\cdot \eta}\cdot \left(\frac{\dot V}{A_{s}} \right)^{2} (Eq. 2)

Where:

\rho_{a} - Density of air, measured in kilograms per cubic meter.

\dot V - Volume flow, measured in cubic meters per second.

A_{s} - Cross-sectional area of fan, measured in square meters.

If we know that \rho_{a} = 1.20\,\frac{kg}{m^{3}}, \dot V = 0.05\,\frac{m^{3}}{s}, \eta = 0.3 and A_{s} = 20\times 10^{-4}\,m^{2}, the power needed to be supplied by the fan is:

\dot K = \left[\frac{\left(1.20\,\frac{kg}{m^{3}} \right)\cdot \left(0.05\,\frac{m^{3}}{s} \right)}{2\cdot (0.3)} \right]\cdot \left(\frac{0.05\,\frac{m^{3}}{s} }{20\times 10^{-4}\,m^{2}} \right)^{2}

\dot K = 62.5\,W

A fan with an energy efficiency of 30 % would need 62.5 watts to bring a desired volume flow of 0.05 cubic meters per second through a cross-sectional area of 20 square centimeters.

5 0
3 years ago
Which of these is exhibiting kinetic energy?1) a rock on a mountain ledge2) a space station orbiting Earth 3) a person sitting o
jarptica [38.1K]

The answer would be:

A space station orbiting Earth.

7 0
3 years ago
Read 2 more answers
When a magnetic field is first turned on, the flux through a 20-turn loop varies with time according to Φm=5.0t2−2.0t, where Φm
goldfiish [28.3K]

Answer:

A) ( - 200t + 40 ) volts

B)  b) anticlockwise ,  c) anticlockwise , d) clockwise ,  e) clockwise

Explanation:

Given data:

magnetic flux (Φm) = 5.0t^2 − 2.0t

number of turns = 20

<u>a) determine induced emf </u>

E = - N \frac{d\beta }{dt}

  =  - N ( 10t - 2 ) = - 20 ( 10t - 2 )

  =  - 200t + 40  volts

<u>b) Determine direction of induced current </u>

i) at t = 0

 E = - 0 + 40  ( anticlockwise direction )

ii) at t = 0.10

E = -20 + 40 =  20 ( anticlockwise direction )

iii) at t = 1

E = - 200 + 40 = - 160 ( clockwise direction)

iv) at t = 2

E = -400 + 40 =  - 360 ( clockwise direction )

8 0
3 years ago
An athlete is running a 400m race around a 400m track. On the backstretch the athlete's velocity is 8m/s but he is running into
Aleksandr-060686 [28]

Answer:

33 N

Explanation:

v = Velocity of fluid = 8+2 = 10 m/s

\rho = Density of fluid = 1.2 kg/m³

C = Coefficient of drag = 1.1

A = Cross sectional area = 0.5 m²

Drag force is given by

F=\frac{1}{2}\rho CAv^2\\\Rightarrow F=\frac{1}{2}\times 1.2\times 1.1\times 0.5\times (8+2)^2\\\Rightarrow F=33\ N

The drag force on the athlete is 33 N

3 0
3 years ago
Other questions:
  • Which planet will take the shortest revolution around the sun?
    14·2 answers
  • A 60cm long string of an ordinary guitar is tuned to produce the note a4 (frequency 440hz) when vibrating in its fundamental mod
    12·2 answers
  • Which of these represent a velocity a.123 km/sec. b.34 m/min east
    10·2 answers
  • What is the voltage in a circuit which has a current of 50 amps and a resistance of 10<br> ohms?
    13·1 answer
  • What is the experimental variable?
    8·1 answer
  • Newton first law of motion​
    13·1 answer
  • A wire has a cross sectional area of 4.00 mm2 and is stretched by 0.100 mm by a certain force. How far will a wire of the same m
    14·1 answer
  • The pendulum consists of two slender rods AB and OC which each have a mass of 3 kg/m. The thin plate has a mass of 10 kg/m2. Det
    13·1 answer
  • Which has more inertia - a 2,750 gram object or a 2,500 gram object?
    11·2 answers
  • The ____ of emitted light depends directly on the energy between the two orbits and this determines the color of the light
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!