Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere = 2/5 M R²
Spherical shell = 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I = + M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic = + M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is = + M [²
Is = Ic
2/5 MR² + M ² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R
Other terrestrial planets have more extreme temperatures mainly because of their atmospheres
Explanation:
for example the atmosphere of Venus is composed mainly of carbon dioxide, this carbon dioxide traps the heat or energy from the sun and makes the planet have higher temperatures. where on mars the atmosphere is very thin so it takes in lots of heat and doesn't keep it in very well so it gets very hot and very cold
To perform an experiment to determine the force constant of a spring, you will need a stand with a boss and clamp, a spiral spring, a meter rule and different weights.
The setup is arranged as shown in the image attached. The natural length of the spring is first recorded. Different weights are added to the spring one after the other and the extension is recorded.
The weight is now plotted on the vertical axis and the extension is plotted on the horizontal axis. The slope of the graph is the force constant of the spring.
Learn more: brainly.com/question/10991960
Answer:
pls can you get a clearer image, then u can report back to me
In order for a system to be in equilibrium , two conditions must be met. Net force must be 0.