Answer : The molar mass of unknown substance is, 39.7 g/mol
Explanation : Given,
Mass of unknown substance = 9.56 g
Volume of solution = 100.0 mL
Molarity = 2.41 M
Molarity : It is defined as the number of moles of solute present in one liter of volume of solution.
Formula used :

Now put all the given values in this formula, we get:


Therefore, the molar mass of unknown substance is, 39.7 g/mol
Answer : At constant pressure work is done by the system on the surroundings.
Explanation :
Work done : Any quantity that flows across the boundary of a system during a change in its state and it completely convertible into the lifting of a weight in the surroundings.
Formula for work done is:

Sign convention :
- When volume expand then system work that means work done by the system.
w = (-ve)
- When volume compress then surrounding work that means work done on the system.
w = (+ve)
The given reaction is:

This is a evaporation process in which phase changes from liquid state to gaseous state at constant temperature.
At constant pressure, work depends only on volume.
In evaporation process, the volume expand that means work is done by the system on the surroundings.
Sign convention is, w = (-ve)
Thus, at constant pressure work is done by the system on the surroundings.
Answer:
K^+ and NO3^-
Explanation:
In a balanced ionic equation, we usually see the species that react to yield the main product in the reaction.
Consider the reaction;
Pb(NO3)2(aq) +2 KI(aq) -------> PbI2(s) + 2KNO3(aq)
The main product in this reaction is PbI2. Hence the balanced ionic equation is;
Pb^2+(aq) + 2I^-(aq) ------> PbI2(s)
Notice that K^+ and NO3^- did not participate in this reaction. All ions that are part of the molecular equation but do not participate in the ionic reaction equation are called spectator ions. Hence K^+ and NO3^- are spectator ions in this reaction as can be seen clearly above.
Answer:
salt is dull and brittle and conducts electricity when it has been dissolved into water, which it does quite easily.
Explanation:
transparent and colourless in crystalline form- rather like ice.
Answer:
The factor that will change the volume of the diver's lungs upon reaching the surface is 4
Explanation:
Given data:
Pressure increases 1 atm = 101.325 kPa
34 ft = 10.3632 m
Depth of 102 ft = 31.0896 m
Question: What factor will the volume of the diver's lungs change upon arrival at the surface, V₂/V₁ = ?
The pressure at 31.0896 m:

The factor will the volume of the diver's lungs change upon arrival at the surface:
