1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
15

How much heat is absorbed by a 75g iron skillet when it’s temperature rises from 5c to 20c?

Physics
1 answer:
alexira [117]3 years ago
6 0

Answer: Q=499.5 J  

Explanation:

The heat (thermal energy) absorbed by the iron skillet can be found using the following equation:

Q=m.C.\Delta T   (1)

Where:

Q is the heat  (absorbed)

m=75 g is the mass of the element (iron in this case)

C is the specific heat capacity of the material. In the case of iron is C=0.444\frac{J}{g\°C}

\Delta T=T_{f}-T_{i}=20\°C - 5\°C= 15\°C is the variation in temperature

Knowing this, lets rewrite (1) with these values:

Q=(75 g)(0.444\frac{J}{g\°C})(15\°C)  (2)

Finally:

Q=499.5 J  

You might be interested in
on a recent adventure trip, Anita Break went rock climbing. Anita was able to perform 1370 J of work in 100 seconds. Determine A
Zanzabum

        Power = (energy) / (time)

         =    (1370 joules) / (100 seconds)

         =       13.7  joules/second

         =       13.7 watts .

That's not an awful lot of power, especially for a strenuous activity like
rock-climbing.  Shoot !  Even I could probably perform at that level.

Compare 13.7 watts to the light power coming out of a 20-watt night light.

         13.7 watts  =  0.018 horsepower.      (rounded)
5 0
3 years ago
Automobile A and B are initially 30 m apart travelling in adjacent highway lanes at speeds VA = 14.4 km/hr., VB 23.4 km/hr. at t
marshall27 [118]

Answer:

        x = 240 m

Explanation:

This is a kinematics exercise

Let's fix our frame of reference on car A

           x = x₀ₐ+ v₀ₐ t + ½ aₐ t²

         

the initial position of car a is zero

           x = 0 + v₀ₐ t + ½ 0.8 t²

for car B

          x = x_{ob} + v_{ob} t - ½ a_b t²

     

car B's starting position is 30 m

         x = 30 + v_{ob} t - ½ 0.4 t²

at the point where they meet, the position of the two vehicles is the same

         0 + v₀ₐ t + ½ 0.8 t² = 30 + v_{ob} t - ½ 0.4 t²

let's reduce the speeds to the SI system

        v₀ₐ = 14.4 km / h (1000 m / 1 km) (1h / 3600s) = 4 m / s

        v_{ob} = 23.4 km / h = 6.5 m / s

        4 t + 0.4 t² = 30 + 6.5 t - 0.2 t²

        0.2 t² - 2.5 t - 30 = 0

        t² - 12.5 t - 150 = 0

we solve the quadratic equation

       t = \frac{12.5 \pm \sqrt{12.5^2 + 4 \ 150}  }{2}

       t = \frac{12.5 \  \pm 27.5}{2}

       t₁ = 20 s

       t₂ = -7.5 s

time must be a positive quantity so the correct result is t = 20 s

let's look for the distance

        x = 4 t + ½ 0.8 t²

        x = 4 20 + ½ 0.8 20²

        x = 240 m

8 0
3 years ago
What is the name of the line drawn perpendicular to the surface where a light ray strikes?
AnnyKZ [126]
It is the normal line
7 0
3 years ago
An electron in a vacuum is first accelerated by a voltage of 51400 V and then enters a region in which there is a uniform magnet
zimovet [89]

Answer:

       F = 8.6 10⁻¹² N

Explanation:

For this exercise we use the law of conservation of energy

Initial. Field energy with the electron at rest

         Em₀ = U = q ΔV

Final. Electron with velocity, just out of the electric field

         Emf = K = ½ m v²

          Em₀ = Emf

          e ΔV = ½ m v²

          v =√ 2 e ΔV / m

          v = √(2 1.6 10⁻¹⁹ 51400 / 9.1 10⁻³¹)

           v = √(1.8075 10¹⁶)

           v = 1,344 10⁸ m / s

Now we can use the equation of the magnetic force

         F = q v x B

Since the speed and the magnetic field are perpendicular the force that

        F = e v B

        F = 1.6 10⁻¹⁹  1.344 10⁸ 0.4

       For this exercise we use the law of conservation of energy

Initial. Field energy with the electron at rest

         Emo = U = q DV

Final. Electron with velocity, just out of the electric field

         Emf = K = ½ m v2

          Emo = Emf

          .e DV = ½ m v2

          .v = RA 2 e DV / m

          .v = RA (2 1.6 10-19 51400 / 9.1 10-31)

           .v = RA (1.8075 10 16)

           .v = 1,344 108 m / s

Now we can use the equation of the magnetic force

         F = q v x B

Since the speed and the magnetic field are perpendicular the force that

        F = e v B

       F = 1.6 10-19 1,344 108 0.4

       F = 8.6 10-12 N

5 0
3 years ago
A 1000-kg car is moving at 30 m/s around a horizontal unbanked curve whose diameter is 0.20 km. What is the magnitude of the fri
omeli [17]

Answer:

4500 N

Explanation:

When a body is moving in a circular motion it will feel an acceleration directed towards the center of the circle, this acceleration is:

a = v^2/r

where v is the velocity of the body and r is the radius of the circumference:

Therefore, a body with mass m, will feel a force f:

f = m v^2/r

Therefore we need another force to keep the body(car) from sliding, this will be given by friction, remember that friction force is given a the normal times a constant of friction mu, that is:

fs = μN = μmg

The car will not slide if     f = fs,   i.e.

fs = μmg =  m v^2/r

That is, the magnitude of the friction force must be (at least) equal to the force due to the centripetal acceleration

fs = (1000 kg)  * (30m/s)^2 / (200 m) = 4500 N

7 0
3 years ago
Read 2 more answers
Other questions:
  • A roofer drops a nail that hits the ground traveling at 26 m/s. How fast was the nail traveling 1 second before it hits the grou
    15·1 answer
  • When designing an experiment, it is important to make sure your hypothesis is
    8·1 answer
  • What method of heat transfer does heat energy use to reach earth from the sun?
    14·2 answers
  • The principle of alignment means that you use conventions of typography, layout, color, and other visual elements to make sure t
    15·1 answer
  • Please help solve this inelastic collision question please use GUESS to solve it if you can’t it’s fine
    14·1 answer
  • A car is traveling in a uniform circular motion on a section of road whose radius is r. The road is slippery, and the car is jus
    14·1 answer
  • Consider the diatomic molecule oxygen O2 which is rotating in the xy plane about the z axis passing through its center, perpendi
    8·1 answer
  • When discussing distances between objects in the solar system, which term do you use?
    14·2 answers
  • An EM wave has a wave length of 956 m, What type of electromagnetic waves is this wave
    5·1 answer
  • A body is projected vertically upwards with a speed 100 m/s from the ground then distance it covers in its last second of its up
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!