According to the Law of Definite Proportions from Dalton's Atomic Theory, each compound is composed of a fixed ratio of each of its individual elements. So, the number of individual elements per 1 particle of that compound is represented by the subscripts. The answers are as follows:
Table sugar: 12 atoms of carbon, 22 atoms of hydrogen; 11 atoms of oxygen; 45 total atoms
Marble: 1 atom of calcium, 1 atom of carbon; 3 atoms of oxygen; 5 total atoms
Natural gas: 1 atom of carbon, 4 atoms of hydrogen; 5 total atoms
Rubbing alcohol: 3 atoms of carbon, 8 atoms of hydrogen; 1 atom of oxygen; 12 total atoms
Table sugar: 1 atom of silicon; 2 atoms of oxygen; 3 total atoms
This problem is providing the ratio of nitrogen to oxygen by mass in nitrogen monoxide, NO, as 7.0:8.0 and asks for the same ratio but in NO₂ and N₂O₇. After doing the calculations, the results are 7.0:16.0 and 1.0:4.0 respectively.
<h3>Mass ratios:</h3>
In chemistry, one can calculate the mass ratios in chemical formulas according to the atomic mass of each atom. In such a way, one knows the mass ratio of nitrogen to oxygen in NO is 7.0:8.0 because we divide the atomic mass of nitrogen by oxygens:

Now, for chemical formulas with subscripts, one must multiply the atomic mass of the element by the subscript in the formula, which is the case of NO₂ and N₂O₇ as shown below:

Therefore, the results for NO₂ and N₂O₇ are 7.0:16.0 and 1.0:4.0 respectively
Learn more about atomic masses: brainly.com/question/5566317
Answer:
4
Explanation:
Carbon configuration- 2,4
Valence electrons means the outershell electrons
That means valence electrons=4
Its hybridization would be sp because Be only has 2 covalent bonds with Cl
Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.
