Answer:
1.7 hours
Explanation:
Time taken in the journey = 3 hours
Distance of the entire journey = 197 miles
Distance travelled on train = x
Distance travelled on bus = 197-x
Average speed of train = 70 mph
Average speed of bus = 60 mph
Time = Distance / Speed

Distance travelled by train = 119 miles
Time taken on train = 119 / 70 = 1.7 hours
Manuel spent 1.7 hours on the train
Given:
k = 100 lb/ft, m = 1 lb / (32.2 ft/s) = 0.03106 slugs
Solution:
F = -kx
mx" = -kx
x" + (k/m)x = 0
characteristic equation:
r^2 + k/m = 0
r = i*sqrt(k/m)
x = Asin(sqrt(k/m)t) + Bcos(sqrt(k/m)t)
ω = sqrt(k/m)
2π/T = sqrt(k/m)
T = 2π*sqrt(m/k)
T = 2π*sqrt(0.03106 slugs / 100 lb/ft)
T = 0.1107 s (period)
x(0) = 1/12 ft = 0.08333 ft
x'(0) = 0
1/12 = Asin(0) + Bcos(0)
B = 1/12 = 0.08333 ft
x' = Aω*cos(ωt) - Bω*sin(ωt)
0 = Aω*cos(0) - (1/12)ω*sin(0)
0 = Aω
A = 0
So B would be the amplitude. Therefore, the equation of motion would be x
= 0.08333*cos[(2π/0.1107)t]
Correct answer choice is:
C. Medium range
Explanation:
Medium range exercises are used to gain extra strength and fitness. Usually, heavyweights are used with less number of repetitions. These sort of exercises are mostly the hardest t do. All you need is to have a high level of motivation and stamina, which can be gained by running or cycling.
I believe the answer is A. <span>At age 40, after 15 years, George got on his old bike and found he could still ride it without falling on his face.
Implicit memory is the type of memory that we've acquired in the past and often used automatically/subconsciously.
Other examples of implicit memory is when we could do a certain task that we're used to do even without paying any attention.</span>
Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)