<span>As we know through the principle of conservation of energy, energy can neither be created nor destroyed. Therefore, the energy removed from the water in order to make it freeze is absorbed by the surroundings. This is why the surroundings in which freezing is taking place are below freezing. This is more easily illustrated in the example of condensation. If you were to hold a plate over a pot of boiling water, some of the water would give its energy to the plate and condense on its surface.</span>
Explanation:
b is correct. 30.6 g H2O is produced.
Answer:
D 2,2
Explanation:
We can see that there are 2 chlorines on the reactant side so there has to be a 2 on the product side
Now we have Na + Cl2 --> 2NaCl
The problem now is that there are 2 sodiums on the product side so add a 2 to the Na on the reactant side
2Na + Cl2 --> 2NaCl
Now it's balanced!
Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is: