Answer:
in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution. (option C).
Explanation:
In a reaction where NaOH is added to H2O.
NaOH is considered a strong base, this means that in an aqueous solution ( in water) it's able to completely disassociate in ions.
There will not remain any NaOH in the solution. This means option D is not correct.
The ions in which NaOH will disassociate are : NaOH → Na+ + OH-
These ions we will find in the solution.
Not only Na+ because NaOH is a strong base, so there will be a lot of OH- ions as well in solution.
This means in a chemical reaction of NaOH with H2O, after NaOH is completely disassociated, we will find Na+ and OH- ions in the solution.
Answer:
Elements can combine in any proportion to form a compound. -third choice
The last step in performing a titration is <span>determining the concentration of an unknown base. So the answer to your question is letter B. The concentration maybe either an acid or base. The other choices are the earlier procedures in performing titration.</span>
The statement that correctly describes the nucleus of the atom is that most of the mass of an atom is located in the nucleus. The nucleus contains neutrons and protons. Rutherford reasoned that all of the atom's positively charged particles were contained in the nucleus and the negatively charged particles were scattered outside the nucleus. Both neutrons and protons are given a mass of one atomic mass unit or amu. Electrons have a mass many times smaller than 1 amu.