Answer: 3. F1 = F2
Explanation:
According to <u>Newton's law of Gravitation</u>, the force
exerted <u>between two bodies</u> or objects of masses
and
and separated by a distance
is equal to the product of their masses divided by the square of the distance:
(1)
Where
is the gravitational constant
Now, in the especific case of the Earth and the satellite, where the Earth has a mass
and satellite a mass
, being both separated a distance
, the force exerted by the Earth on the satellite is:
(2)
And the force exerted by the satellite on the Earth is:
(3)
As we can see equations (2) and (3) are equal, hence the magnitude of the gravitational force is the same for both:

There is no "why", because that's not what happens. The truth is
exactly the opposite.
Whatever the weight of a solid object is in air, that weight will appear
to be LESS when the object is immersed in water.
The object is lifted by a force equal to the weight of the fluid it displaces.
It displaces the same amount of air or water, and any amount of water
weighs more than the same amount of air. So the force that lifts the
object in water is greater than the force that lifts it in air, and the object
appears to weigh less in the water.
Answer:
It is easier to scale the voltage of AC from high to low and low to high than with DC
Explanation:
typically power is used far away from the place where it's generated so to ensure that transmission losses( copper losses) are minimized voltage has to be stepped up during transmission..but due to the fact that most house hold equipment requires low voltage levels it has to be stepped down once it reaches a household/ domestic load...it's easier to do this for Ac than for DC.
Answer:
500cal
Explanation:
Given parameters:
Mass of water = 50g
Initial temperature = 22°C
Final temperature = 32°C
Specific heat of water = 1cal/g
Unknown:
Amount of heat absorbed by the water in calories = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the amount of heat absorbed
m is the mass
c is the specific heat capacity
Ф is the temperature change
H = 50 x 1 x (32 - 22) = 500cal