the mass number minus the atomic number
<span>When an object moves in a circle, the acceleration points toward the center of the circle. This acceleration is called centripetal acceleration.
We can use a simple equation to find centripetal acceleration.
a = v^2 / r
We can use this same equation to find the speed of the car.
v^2 = a * r
v = sqrt { a * r }
v = sqrt{ (1.50)(9.80 m/s^2)(11.0 m) }
v = 12.7 m/s
The speed of the roller coaster is 12.7 m/s</span>
Answer:
(A) The speed just as it left the ground is 30.25 m/s
(B) The maximum height of the rock is 46.69 m
Explanation:
Given;
weight of rock, w = mg = 20 N
speed of the rock at 14.8 m, u = 25 m/s
(a) Apply work energy theorem to find its speed just as it left the ground
work = Δ kinetic energy
F x d = ¹/₂mv² - ¹/₂mu²
mg x d = ¹/₂m(v² - u²)
g x d = ¹/₂(v² - u²)
gd = ¹/₂(v² - u²)
2gd = v² - u²
v² = 2gd + u²
v² = 2(9.8)(14.8) + (25)²
v² = 915.05
v = √915.05
v = 30.25 m/s
B) Use the work-energy theorem to find its maximum height
the initial velocity of the rock = 30.25 m/s
at maximum height, the final velocity = 0
- mg x H = ¹/₂mv² - ¹/₂mu²
- mg x H = ¹/₂m(0) - ¹/₂mu²
- mg x H = - ¹/₂mu²
2g x H = u²
H = u² / 2g
H = (30.25)² / 2(9.8)
H = 46.69 m
Gravity is the most likely force causing this phenomenon. please leave a thanks
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C