It creates friction on the forward moving object, causing it to loose momentum, until finally, it stops.
Hope this helps!
Answer:
The horizontal component of the truck's velocity is: 23.70 m/s
The vertical component of the truck's velocity is: 3.13 m/s
Explanation:
You have to apply trigonometric identities for a right triangle (because the ramp can be seen as a right triangle where the speed is the hypotenuse), in order to obtain the components of the velocity vector.
The identities are:
Cosα= 
Senα= 
Where H is the hypotenuse, α is the angle, CA is the adjacent cathetus and CO is the opposite cathetus
The horizontal component of the truck's velocity is:
Let Vx represent it.
In this case, CA=Vx, H=24 and α=7.5 degrees
Vx=(24)Cos(7.5)
Vx=23.79 m/s
The vertical component of the truck's velocity is:
Let Vy represent it.
In this case, CO=Vy, H=24 and α=7.5 degrees
Vy=(24)Sen(7.5)
Vy=3.13 m/s
Answer:
a. 0.21 rad/s2
b. 2.205 N
Explanation:
We convert from rpm to rad/s knowing that each revolution has 2π radians and each minute is 60 seconds
200 rpm = 200 * 2π / 60 = 21 rad/s
180 rpm = 180 * 2π / 60 = 18.85 rad/s
r = d/2 = 30cm / 2 = 15 cm = 0.15 m
a)So if the angular speed decreases steadily (at a constant rate) from 21 rad/s to 18.85 rad/s within 10s then the angular acceleration is

b) Assume the grind stone is a solid disk, its moment of inertia is

Where m = 28 kg is the disk mass and R = 0.15 m is the radius of the disk.

So the friction torque is

The friction force is

Since the friction coefficient is 0.2, we can calculate the normal force that is used to press the knife against the stone

0.67s
Explanation:
Given parameters:
Speed of bullet = 600m/s
Distance of target = 400m
Unknown:
Time taken for bullet to reach target = ?
Solution:
Speed is a physical quantity that expresses the rate of change of distance with time;
Speed = 
Since time is unknown, we make it the subject of the expression;
time =
= 
time = 0.67s
Learn more:
Speed brainly.com/question/10048445
#learnwithBrainly
Different densities have to have a reason - different pressure and/or humidity etc. If there is a different pressure, there is a mechanical force that preserves the pressure difference: think about the cyclones that have a lower pressure in the center. The cyclones rotate in the right direction and the cyclone may be preserved by the Coriolis force.
If the two air masses differ by humidity, the mixing will almost always lead to precipitation - which includes a phase transition for water etc. It's because the vapor from the more humid air mass gets condensed under the conditions of the other. You get some rain. In general, intense precipitation, thunderstorms, and other visible isolated weather events are linked to weather fronts.
At any rate, a mixing of two air masses is a nontrivial, violent process in general. That's why the boundary is called a "front". In the military jargon, a front is the contested frontier of a conflict. So your idea that the air masses could mix quickly and peacefully - whatever you exactly mean quantitatively - either neglects the inertia of the air, a relatively low diffusion coefficient, a low thermal conductivity, and/or high latent heat of water vapor. A front is something that didn't disappear within minutes so pretty much tautologically, there must be forces that make such a quick disappearance impossible.