Answer:
Newton's 2nd Law says the acceleration of an object depends on its <u>mass </u>and the amount of <u>net force</u> acting on it.
Explanation:
Definition of acceleration:
The acceleration is rate of change of velocity of an object with respect to time.
Formula:
a = Δv/Δt
a = acceleration
Δv = change in velocity
Δt = change in time
Units:
The unit of acceleration is m.s⁻².
Acceleration can also be determine through following formula,
F = m × a
a = F/m
This is the newton's second law:
"The acceleration of an object depends on its <u>mass </u>and the amount of <u>net force</u> acting on it"
The acceleration is depend directly on the force while inversely on the mass.
Answer:
0.95L
Explanation:
Data obtained from the question include:
V1 (initial volume) = 1L
T1 (initial temperature) = 315K
P1 (initial pressure) = 1.10 atm
T2 (final temperature) = stp = 273K
P2 (final pressure) = stp = 1atm
V2 (final volume) =?
Using the general gas equation P1V1/T1 = P2V2/T2, the final volume of the system can be obtained as follow:
P1V1/T1 = P2V2/T2
1.1 x 1/315 = 1 x V2/273
Cross multiply to express in linear form.
315 x V2 = 1.1 x 273
Divide both side by 315
V2 = (1.1 x 273) /315
V2 = 0.95L
Therefore, the final volume of the system if STP conditions are established is 0.95L
Answer:
9.1 seconds
Explanation:
Given that for a second order reaction
1/[A]t = kt + 1/[A]o
Where [A]t= concentration at time = t= 0.340M
[A]o= initial concentration = 0.820M
k= rate constant for the reaction=0.190m-1s-1
t= time taken for the reaction (the unknown)
Hence;
(0.340)^-1 = 0.190×t + (0.820)^-1
t= (0.340)^-1 - (0.820)^-1/0.190
t= 9.1 seconds
Hence the time taken for the concentration to decrease from 0.840M to 0.340M is 9.1 seconds.
Answer:
b. First determine the mass of the sample and then convert it to the number of atoms using Avogadro's number and the molar mass of the element.
Explanation:
a. First determine the mass of the sample and then convert it to the number of atoms using the molar mass of the element. <em>FALSE. </em>As the mass is in grams and molar mass is in g/mol. This result in the moles of each element, not its number of atoms.
b. First determine the mass of the sample and then convert it to the number of atoms using Avogadro's number and the molar mass of the element. <em>TRUE. </em>Mass and molar mass will result in moles of element. These moles could be converted in number of atoms using Avogadro's number that is in # atoms per mole.
c.Use atomic microscope to determine Avogadro's number, then determine the mass of the sample and convert it to the number of atoms. <em>FALSE. </em>An atomic microscope is not used to determine Avogadro's number.
d.Use atomic microscope to count each atom. <em>FALSE. </em>There is not possible to count every single atom in an element. There are more atoms in a drop of water than stars in the sky.
I hope it helps!
Historians find proof in the past and scientists keep questioning and look at the future