Answer:
The molarity of the solution increases.
Explanation:
Molarity is the measure of the concentration of the solute in the solution. In this case, the solvent is the sugar solution and the solute is the sugar.
If sugar is ADDED to the already sugary solution, then there would be more sugar. Therefore, the sugar (solute) would increase in number.
This means that the answer is the third choice: The molarity of the solution increases.
The answer would not be the first or second choice because there isn't anything in the question that implies water. It just says sugar solution.
The answer is not the last choice because the sugar concentration does not decrease after you have added more sugar to it. It increases.
Answer:
Covalent compounds.
Explanation:
Hello,
In this case, when forming chemical bonds in order to form compounds, we say that if electrons are shared, covalent compounds are to be formed and they usually have subscripts that need prefixes to be named, for instance phosphorous pentachloride (PCl5), dichlorine heptoxide (Cl2O7), carbon tetrachloride (CCl4) and many others.
Regards.
Answer:
Hydrogen Bond
Explanation:
Hydrogen bond interactions are formed between the hydrogen atom bonded to most electronegative atoms (i.e. F, O and N) of one molecule and most electronegative atom (i.e. F, O and N) of another molecule.
In this interaction the hydrogen atom has partial positive charge and electronegative atom has partial negative charge.
A wave with low energy will also have long wavelengths and low frequencies.
The given in a single photon of a wave is given by Planck's equation:
E = hc/λ
and
E = hf
Where λ is the wavelength and f is the frequency of the photon. This means that energy is directly proportional to the frequency and inversely proportional to the wavelength. Thus, it is visible that photons with a lower frequency and a longer wavelength will have a lower energy.
Start with the 19.7 mol HNO3. use dimensional analysis to correctly convert from mol HNO3 to gram H2O. so, it should look similar to 19.7 mol HNO3 x (2 mol H2O/6 mol HNO3) x (18 g H2O/1 mol H2O)
the first parenthesis’ numbers were received from the balanced equation (for every 6 mol HNO3, 2 mol H2O formed). the second is converting from moles to grams by using the molar mass of H2O (1+1+16). you should get 709.2/6. once you divide those, the answer should be 118.2 g H2O. I’m not sure if your computer requires you to use the exact answer or stop at the correct number of significant digits, but if it does then it might just be 118. g H2O.