Answer: C. the motion of a spacecraft under gravitational influence.
Explanation:
A is Metallurgy, B is Biology, C is astro-physics, I am not sure what D is, but it's safe to say it's not physics, E, micro-biology, and the study of radiation. C is the only one involving physics.
Answer:
The value is 
Explanation:
From the question we are told that
The focal length of the objective is 
The focal length of the eyepiece is 
The tube length is 
Generally the magnitude of the overall magnification is mathematically represented as

Where
is the objective magnification which is mathematically represented as

=> 
=> 
is the eyepiece magnification which is mathematically evaluated as



So


Solution :
Let the positive
is along the East and the positive
direction is along the north.
Given :
Mass of the Tesla car,
= 
Mass of the Ford car, 
Now let the initial velocity of Tesla car in the south direction be = 
The initial momentum of Tesla car, 
Let the initial velocity of Ford car in the east direction be = 
So the initial momentum of the Ford car is 
Therefore, the initial velocity of both the cars is 

Now the final velocity of both the cars is
So the vector form is :


Therefore the momentum after the accident is



According to the law of conservation of momentum, we know




From, 
We get, 
Therefore the speed of Tesla car before collision = 25.4 m/s
The speed of ford car before collision = 24.4 m/s
Answer:
0.04455 Hz
Explanation:
Parameters given:
Wavelength, λ = 6.5km = 6500m
Distance travelled by the wave, x = 8830km = 8830000m
Time taken, t = 8.47hours = 8.47 * 3600 = 30492 secs
First, we find the speed of the wave:
Speed, v = distance/time = x/t
v = 8830000/30492 = 289.58 m/s
Frequency, f, is given as velocity divided by wavelength:
f = v/λ
f = 289.58/6500
f = 0.04455 Hz
Answer:
20 m
Explanation:
We'll begin by calculating the kinetic energy of the mass. This can be obtained as follow:
Mass (m) = 10 kg
Velocity (v) = 20 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 10 × 20²
KE = 5 × 400
KE = 2000 J
Finally, we shall the height to which the mass must be located in order to have potential energy that is the same as the kinetic energy. This can be obtained as follow:
Mass (m) = 10 kg
Acceleration due to gravity (g) = 10 m/s²
Potential energy (PE) = Kinetic energy (KE) = 2000 J
Height (h) =..?
PE = mgh
2000 = 10 × 10 × h
2000 = 100 × h
Divide both side by 100
h = 2000 / 100
h = 20 m
Thus, the object must be located at a height of 20 m in order to have potential energy that is the same as the kinetic energy.