I think that mechanism is called a <em>"lens turret"</em>.
I think the answer to this problem I believe would probably be B. learned optimism. I think it's the closest answer...I THINK
Answer:
C. 3.00 s
Explanation:
Given:
Δy = 1.80 m − 46.0 m = -44.2 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
-44.2 m = (0 m/s) t + ½ (-9.8 m/s²) t²
t = 3.00 s
Answer:
B
Explanation:
If you cross of what you don't think are the answers then it makes it easier to narrow it down to what the answers are.
Hope this helps!
Answer:
1.54 m/s²
Explanation:
The free-fall acceleration is calculated as
g = w²r
Where w is the angular velocity of the satellite and r is the radius of the moon.
The angular velocity can be calculated as

Where T is the period, so
T = 110 min = 110 x 60 s = 6600 s
Then,

Finally, the radius of the moon is r = 1.7 x 10⁶ m, so the free-fall acceleration is

Therefore, the answer is 1.54 m/s²