178 centimeters=1.78 meters
which means that the answer is C.
Answer:
f" = 40779.61 Hz
Explanation:
From the question, we see that the bat is the source of the sound wave and is initially at rest and the object is in motion as the observer, thus;
from the Doppler effect equation, we can calculate the initial observed frequency as:
f' = f(1 - (v_o/v))
We are given;
f = 46.2 kHz = 46200 Hz
v_o = 21.8 m/s
v is speed of sound = 343 m/s
Thus;
f' = 46200(1 - (21/343))
f' = 43371.4285 Hz
In the second stage, we see that the bat is now a stationary observer while the object is now the moving source;
Thus, from doppler effect again but this time with the source going away from the obsever, the new observed frequency is;
f" = f'/(1 + (v_o/v))
f" = 43371.4285/(1 + (21.8/343))
f" = 40779.61 Hz
Answer:
The electric flux is zero through four cube surfaces given that a cubical gaussian surface surrounds a long, straight, charged filament that passes perpendicularly through two opposite faces.
Explanation:
Assuming the charged filament is quite long and you are not near the edges, the two opposing sides that the filament travels through have no flux. If the charge filament is long, which you may assume is indefinitely long, then there is the equal amount of charge on the left and right of where you are, therefore the electric field has no preference for left or right. This implies that the electric field can only travel in or out of the filament. No field lines run through the two faces of the cube that the filament goes through if the electric field is not moving left or right. There are electric field lines on the four sides of the filament.
To learn more about cubical gaussian surface and electric flux. Click brainly.com/question/13003911
#SPJ4
Answer:
Biological system is one of the major causes of oscillation due to sensitive negative feedback loops. For instance, imagine a father teaching his son how to drive, the teen is trying to keep the car in the centre lane and his father tell him to go right or go left as the case may be. This is a example of a negative feedback loop of a biological system. If the father's sensitivity to the car's position on the road is reasonable, the car will travel in a fairly straight line down the centre of the road. On the other hand, what happens if the father raise his voice at the son "go right" or when the car drifts a bit to the left? The startled the son will over correct, taking the car too far to the right. The father will then starts yelling "go left" then the boy will over correct again and the car will definitely oscillate back and forth. A scenario that indicates the behavior of a car driver under a very steep feedback control mechanism. Since the driver over corrects in each direction. Therefore causes oscillations.
Explanation: