Answer:
The enthalpy change for the given reaction is 424 kJ.
Explanation:

We have :
Enthalpy changes of formation of following s:



(standard state)
![\Delta H_{rxn}=\sum [\Delta H_f(product)]-\sum [\Delta H_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5B%5CDelta%20H_f%28product%29%5D-%5Csum%20%5B%5CDelta%20H_f%28reactant%29%5D)
The equation for the enthalpy change of the given reaction is:
=

=


The enthalpy change for the given reaction is 424 kJ.
Answer:
The correct answer is 199.66 grams per mole.
Explanation:
Based on law of effusion given by Graham, a gas rate of effusion is contrariwise proportionate to the square root of molecular mass, that is, rate of effusion of gas is inversely proportional to the square root of mass. Therefore,
R1/R2 = √ M2/√ M1
Here rate is the rate of effusion of the gas expressed in terms of number of mole per uni time or volume, and M is the molecular mass of the gas.
Rate Q/Rate N2 = √M of N2/ √M of Q
The molecular mass of N2 or nitrogen gas is 28 grams per mole and M of Q is molecular mass of Q and based on the question Q needs 2.67 times more to effuse in comparison to nitrogen gas, therefore, rate of Q = rate of N2/2.67
Now putting the values we get,
rate of N2/2.67/rate of N2 = √28/ √M of Q
√M of Q = √ 28 × 2.67
M of Q = (√ 28 × 2.67)²
M of Q = 199.66 grams per mole
Answer:
Electromagnetic waves are typically described by any of the following three physical properties: frequency (f), wavelength (λ), or intensity (I). Light quanta are typically described by frequency (f), wavelength (λ), or photon energy (E).
Explanation:
please mark as brainlist
Answer:
The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged).