Crust, the upper layer of the Earth, is not always the same. Crust under the oceans is only about 5 km thick while continental crust can be up to 65 km thick. Also, ocean crust is made of denser minerals than continental crust.
The tectonic plates are made up of Earth’s crust and the upper part of the mantle layer underneath. Together the crust and upper mantle are called the lithosphere and they extend about 80 km deep. The lithosphere is broken into giant plates that fit around the globe like puzzle pieces. These puzzle pieces move a little bit each year as they slide on top of a somewhat fluid part of the mantle called the asthenosphere. All this moving rock can cause earthquakes.
The asthenosphere is ductile and can be pushed and deformed like silly putty in response to the warmth of the Earth. These rocks actually flow, moving in response to the stresses placed upon them by the churning motions of the deep interior of the Earth. The flowing asthenosphere carries the lithosphere of the Earth, including the continents, on its back.
Answer:
- <em><u>Step 2 (the slow step).</u></em>
Explanation:
The rate-determining step is always the slow step of a mechanism.
That is so, because it is the slow step which limits the reaction.
Imaging that for assembling a toy you have process of three steps:
- 1. order ten pieces, which you can do in 1 minute: meaning that you can order order the pieces for 60/1 = 60 toys in 1 hour.
- 2. glue the pieces and hold the toy until the glue hardens, which takes 1 hour: meaning finishingh 1 toy in 1 hour.
- 3. pack the toy, which takes 2 minutes: meaning that you can pack 60/2 = 30 toys in one hour.
The time to glue and hold one toy until the glue hardens determines that you can assemble 1 toy in 1 hour and not 60 toys or 30 toys.
Thus, the step that determines the rate at which the reaction happens is the slowest step: step 2.
Answer: 1. It is made up of the same basic particles
Matter is made up of atoms, molecules, and ions that cause it to have mass and volume. The different types of matter are made up of the same basic particles but differ on the molecular arrangement and energy the atoms contains that's why they appear differently and have different properties.