Answer: A
Explanation: There is a lot of sand that will blow and form dunes unlike option b
Answer is: mass of sodium nitrate is 21,25 g.
m(H₂O) = 500 g · 1 kg/1000 g = 0,5 kg.
b(solution) = 0,500 m = 0,500 mol/kg.
m(NaNO₃) = ?
b(solution) = n(NaNO₃) ÷ m(H₂O).
n(NaNO₃) = 0,500 mol/kg · 0,5 kg.
n(NaNO₃) = 0,25 mol.
m(NaNO₃) = n(NaNO₃) · M(NaNO₃).
m(NaNO₃) = 0,25 mol · 85 g/mol.
m(NaNO₃) = 21,25 g.
Atomic mass of magnesium = (23.99 x 78.99%) + (24.99 x 10.00%) + (25.98 x 11.01%)
= 24.31 g/mol
The balanced chemical equation is written as:
<span>CsF(s) + XeF6(s) ------> CsXeF7(s)
We are given the amount of </span>cesium fluoride and <span>xenon hexafluoride used for the reaction. We need to determine first the limiting reactant to proceed with the calculation. From the equation and the amounts, we can say that the limiting reactant would be cesium fluoride. We calculate as follows:
11.0 mol CsF ( 1 mol </span>CsXeF7 / 1 mol CsF ) = 11.0 mol <span>CsXeF7</span>
Answer:
The empirical formula is, C4H4S
Explanation:
Number of moles of carbon = 1.119 g/ 44g/mol = 0.025 moles
Mass of Carbon= 0.025 moles × 12 g/ mole = 0.3 g
Number of moles of hydrogen = 0.229/18g/mol × 2 = 0.025 moles
Mass of hydrogen = 0.025 moles × 1 = 0.025 g
Number of moles of sulphur = 0.407g/ 64 g/mol = 0.0064 moles
Mass of sulphur= 0.0064 moles ×32 = 0.2 g
Now we obtain the mole ratios by dividing through by the lowest ratio.
C- 0.025 moles/ 0.0064 moles, H- 0.025 moles/ 0.0064 moles, S- 0.0064 moles/0.0064 moles
C4H4S