Answer:
49.925N
Explanation:
According to newton's second law of motion:

is the sum of force along the x component
m is the mass of the crate
ax is the acceleration

Fk is the magnitude of the force of kinetic friction
Given
Fm = 93.7
m = 42.5kg
a = 1.03m/s²
Substitute into the formula:

Hence the magnitude of the force of kinetic friction (in N) acting on the crate is 49.925N
Answer:
L = 2.83 J.s
Explanation:
The formula for the angular momentum of the stone is given as follows:
L = mvr
where,
L = angular momentum of the stone = ?
m = mass of the stone = 0.1 kg
v = linear velocity of the stone = rω
r = radius of circular path = 1.5 m
ω = angular speed of the stone = (2 rev/s)(2π rad/1 rev) = 4π rad/s
Therefore,
L = mvr = m(rω)r
L = mr²ω
using values, we get:
L = (0.1 kg)(1.5 m)²(4π rad/s)
<u>L = 2.83 J.s</u>
Answer:
presumptuous
Explanation:
it's what you call someone who assumes something
Answer: The pressure in a liquid dec reaches with depth. F
The pressure in a liquid increases with depth.
The upthrust on an object is larger when it is deeper in a pool. 7
The bottom of a dam is thinner than the top of a dam. F
The bottom of a dam is thicker than the top of a dam.
The pressure is bigger at the bottom of a lake because of the weight of water above it. 7
I think these are the answers.
To find the temperature it is necessary to use the expression and concepts related to the ideal gas law.
Mathematically it can be defined as

Where
P = Pressure
V = Volume
n = Number of moles
R = Gas constant
T = Temperature
When the number of moles and volume is constant then the expression can be written as

Or in practical terms for this exercise depending on the final temperature:

Our values are given as

Replacing

Therefore the final temperature of the gas is 800K