False i just took the test and put true as a guess but got it wrong so it is false
please give me a brainlies
The atoms which make up the ion are covalently bonded to one another. 19) It is possible for a compound to possess both ionic and covalent bonding. a. If one of the ions is polyatomic then there will be covalent bonding within it.
If it;s a good insulator, there'll be no heat transfer warm to cold. So, over time, given the insulation ... nothing should happen ...
Answer:
b) R/4 (There seems to an error in mentioning the multiple choices of this question, please see below explanation of correct calculations for this question.)
Explanation:
dimension of the conductor before melting is l, r
reistivity is p
R=(p*l)/(pie*r2)
after reforming length is reduced to L=l/4
volume in both the cases will be same
i.e. pie * r^2 * l =pie * R^2 * L
r^2 * l = R^2 * (1/2)l
due to this radius will become R=sqrt(2) * r
now new reistance is given by Rx=(p * L)/(pie * R^2)
i.e. Rx=(p * l/2)/(pie * r^2 * 2)
after simplification RX=((p * l)/(pie * r^2))/4
i.e. Rx=R/4
The wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.
Answer:
Explanation:
Since, wavelength, frequency and speed of sound waves are related to each other, we can determine a single parameter with the help of other two parameters. So in this case, the frequency of different notes are given along with their common speed. So as the frequency is inversely proportional to the wavelength then in this case, the wavelength of the notes will be maximum for C1 and minimum for 3951.1 Hz.
Wavelength = Speed / Frequency
Wavelength for C1 note = 340 / 32.7 =10.40 m
Similarly, the wavelength for A6 note = 340/1760=0.193 m
And, the wavelength for B7 note = 340/3951.1 = 0.086 m
So, the wavelength for C1 note is 10.40 m, for A6 note is 0.193 m and for B7 note 0.086 m.