Answer:
hope this helps
Explanation:
glycosidic bond
A covalent bond formed between a carbohydrate molecule and another molecule (in this case, between two monosaccharides) is known as a glycosidic bond (Figure 4). Glycosidic bonds (also called glycosidic linkages) can be of the alpha or the beta type.
Answer:
Hey do you know if "horsleyjaydyn" is a girl you commented once she was a guy so
Explanation:
Answer:
Average atomic mass of carbon = 12.01 amu.
Explanation:
Given data:
Abundance of C¹² = 98.89%
Abundance of C¹³ = 1.11%
Atomic mass of C¹² = 12.000 amu
Atomic mass of C¹³ = 13.003 amu
Average atomic mass = ?
Solution:
Average atomic mass of carbon = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass of carbon = (12.000×98.89)+(13.003×1.11) /100
Average atomic mass of carbon= 1186.68 + 14.43333 / 100
Average atomic mass of carbon = 1201.11333 / 100
Average atomic mass of carbon = 12.01 amu.
Answer:
Option A. KCl (aq)
Option D. Mg(OH)₂(s
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
MgCl₂(aq) + KOH(aq) —>
In solution, MgCl₂(aq) and KOH(aq) will dissociate as follow:
MgCl₂(aq) —> Mg²⁺(aq) + 2Cl¯(aq)
KOH(aq) —> K⁺(aq) + OH¯(aq)
MgCl₂(aq) + KOH(aq) —>
Mg²⁺(aq) + 2Cl¯(aq) + 2K⁺(aq) + OH¯(aq) —> 2K⁺(aq) + 2Cl¯(aq) + Mg(OH)₂ (s)
MgCl₂(aq) + KOH(aq) —> 2KCl (aq) + Mg(OH)₂(s)
Thus, the products of the above reaction are: KCl(aq) and Mg(OH)₂(s)
Thus, option A and D gives the correct answer to the question.