Answer:
270 m
Explanation:
Given:
v₀ = 63 m/s
a = 2.8 m/s²
t = 4.0 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (63 m/s) (4.0 s) + ½ (2.8 m/s²) (4.0 s)²
Δx = 274.4 m
Rounded to two significant figures, the displacement is 270 meters.
Answer:
Please see below as the answers are self-explanatory
Explanation:
a)
- A electric field line is an imaginary line, which has the property that the electric field vector is tangent to it at any point. It starts from positive charges (since the electric field by convention it has the direction of the trajectory that would take a positive test charge, so it always goes away from positive charges) and ends in negative charges.
b)
- Since the potential difference between two points represents the work per unit charge needed for a charge to move between these points, a equipotential surface is the one over which it is not needed to do work to move a charge from any point on the surface to any other point, which means that all points are at the same potential.
c)
- Equipotential surfaces are not necessarily physical surfaces, they can be defined in vaccum for instance.
- As an example, any spherical surface concentric with a point charge, is an equipotential surface, and it can be a real surface or a fictitious one.
Answer:
Gravity creates stars and planets by pulling together the material from which they are made.
Explanation: Thats the only thing i have im stuck on the tga quiz
Answer: FR=2.330kN
Explanation:
Write down x and y components.
Fx= FSin30°
Fy= FCos30°
Choose the forces acting up and right as positive.
∑(FR) =∑(Fx )
(FR) x= 5-Fsin30°= 5-0.5F
(FR) y= Fcos30°-4= 0.8660-F
Use Pythagoras theorem
F2R= √F2-11.93F+41
Differentiate both sides
2FRdFR/dF= 2F- 11.93
Set dFR/dF to 0
2F= 11.93
F= 5.964kN
Substitute value back into FR
FR= √F2(F square) - 11.93F + 41
FR=√(5.964)(5.964)-11.93(5.964)+41
FR= 2.330kN
The minimum force is 2.330kN